📄 instfreq.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.
\markright{instfreq}
\hspace*{-1.6cm}{\Large \bf instfreq}
\vspace*{-.4cm}
\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}
\vspace*{.2cm}
{\bf \large \fontfamily{cmss}\selectfont Purpose}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Instantaneous frequency estimation.
\end{minipage}
\vspace*{.1cm}
{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
[fnormhat,t] = instfreq(x)
[fnormhat,t] = instfreq(x,t)
[fnormhat,t] = instfreq(x,t,l)
[fnormhat,t] = instfreq(x,t,l,trace)
\end{verbatim}
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Description}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
{\ty instfreq} computes the estimation of the instantaneous
frequency of the analytic signal {\ty x} at time instant(s) {\ty
t}, using the trapezoidal integration rule. The result {\ty
fnormhat} lies between 0.0 and 0.5.\\
\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}
Name & Description & Default value\\
\hline
{\ty x} & analytic signal to be analyzed\\
{\ty t} & time instants & {\ty (2:length(x)-1)}\\
{\ty l} & if {\ty l=1}, computes the estimation of the (normalized)
instantaneous frequency of {\ty x}, defined as {\ty
angle(x(t+1)*conj(x(t-1))} ;
if {\ty l>1}, computes a Maximum Likelihood estimation of the
instantaneous frequency of the deterministic part of the signal
blurried in a white gaussian noise.
{\ty l} must be an integer & {\ty 1}\\
{\ty trace} & if nonzero, the progression of the algorithm is shown
& {\ty 0}\\
\hline {\ty fnormhat} & output (normalized) instantaneous frequency\\
\hline
\end{tabular*}
\end{minipage}
\vspace*{1cm}
{\bf \large \fontfamily{cmss}\selectfont Examples}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Consider a linear frequency modulation and estimate its instantaneous
frequency law with {\ty instfreq}\,:
\begin{verbatim}
[x,ifl]=fmlin(70,0.05,0.35,25);
[instf,t]=instfreq(x);
plotifl(t,[ifl(t) instf]);
\end{verbatim}
\end{minipage}
\newpage
\begin{minipage}[t]{13.5cm}
Now consider a noisy sinusoidal frequency modulation with a signal to noise
ratio of 10 dB\,:
\begin{verbatim}
N=64; SNR=10.0; L=4; t=L+1:N-L;
x=fmsin(N,0.05,0.35,40);
sig=sigmerge(x,hilbert(randn(N,1)),SNR);
plotifl(t,[instfreq(sig,t,L),instfreq(x,t)]);
\end{verbatim}
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont See Also}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
ifestar2, kaytth, sgrpdlay.
\end{verbatim}
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Reference}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
[1] I. Vincent, F. Auger, C. Doncarli ``A Comparative Study Between Two
Instantaneous Frequency Estimators'', Proc Eusipco-94, Vol. 3,
pp. 1429-1432, 1994.\\
[2] P. Djuric, S. Kay ``Parameter Estimation of Chirp Signals''
IEEE Trans. on Acoust. Speech and Sig. Proc., Vol. 38, No. 12, 1990.\\
[3] S.M. Tretter ``A Fast and Accurate Frequency Estimator'', IEEE
Trans. on ASSP, Vol. 37, No. 12, pp. 1987-1990, 1989.
\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -