⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 instfreq.tex

📁 时频分析的工具包
💻 TEX
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.
\markright{instfreq}
\hspace*{-1.6cm}{\Large \bf instfreq}

\vspace*{-.4cm}
\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}
\vspace*{.2cm}



{\bf \large \fontfamily{cmss}\selectfont Purpose}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Instantaneous frequency estimation.
\end{minipage}
\vspace*{.1cm}


{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
[fnormhat,t] = instfreq(x)
[fnormhat,t] = instfreq(x,t)
[fnormhat,t] = instfreq(x,t,l)
[fnormhat,t] = instfreq(x,t,l,trace)
\end{verbatim}
\end{minipage}
\vspace*{.5cm}


{\bf \large \fontfamily{cmss}\selectfont Description}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
        {\ty instfreq} computes the estimation of the instantaneous
        frequency of the analytic signal {\ty x} at time instant(s) {\ty
        t}, using the trapezoidal integration rule.  The result {\ty
        fnormhat} lies between 0.0 and 0.5.\\

\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}
Name & Description & Default value\\
\hline
        {\ty x} & analytic signal to be analyzed\\
        {\ty t} & time instants               & {\ty (2:length(x)-1)}\\
        {\ty l} & if {\ty l=1}, computes the estimation of the (normalized)
		instantaneous frequency of {\ty x}, defined as {\ty
		angle(x(t+1)*conj(x(t-1))} ; 
            if {\ty l>1}, computes a Maximum Likelihood estimation of the
            instantaneous frequency of the deterministic part of the signal
            blurried in a white gaussian noise.
            {\ty l} must be an integer        & {\ty 1}\\
        {\ty trace} & if nonzero, the progression of the algorithm is shown
                                        & {\ty 0}\\
 \hline {\ty fnormhat} & output (normalized) instantaneous frequency\\
\hline
\end{tabular*}

\end{minipage}
\vspace*{1cm}


{\bf \large \fontfamily{cmss}\selectfont Examples}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Consider a linear frequency modulation and estimate its instantaneous
frequency law with {\ty instfreq}\,:
\begin{verbatim}
         [x,ifl]=fmlin(70,0.05,0.35,25); 
         [instf,t]=instfreq(x); 
         plotifl(t,[ifl(t) instf]);
\end{verbatim}
\end{minipage}

\newpage

\begin{minipage}[t]{13.5cm}
Now consider a noisy sinusoidal frequency modulation with a signal to noise
ratio of 10 dB\,:
\begin{verbatim}
         N=64; SNR=10.0; L=4; t=L+1:N-L; 
         x=fmsin(N,0.05,0.35,40);
         sig=sigmerge(x,hilbert(randn(N,1)),SNR);
         plotifl(t,[instfreq(sig,t,L),instfreq(x,t)]); 
\end{verbatim}
\end{minipage}
\vspace*{.5cm}


{\bf \large \fontfamily{cmss}\selectfont See Also}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
ifestar2, kaytth, sgrpdlay.
\end{verbatim}
\end{minipage}
\vspace*{.5cm}


{\bf \large \fontfamily{cmss}\selectfont Reference}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
[1] I. Vincent, F. Auger, C. Doncarli ``A Comparative Study Between Two
Instantaneous Frequency Estimators'', Proc Eusipco-94, Vol. 3,
pp. 1429-1432, 1994.\\

[2] P. Djuric, S. Kay ``Parameter Estimation of Chirp Signals''
IEEE Trans. on Acoust. Speech and Sig. Proc., Vol. 38, No. 12, 1990.\\

[3] S.M. Tretter ``A Fast and Accurate Frequency Estimator'', IEEE
Trans. on ASSP, Vol. 37, No. 12, pp. 1987-1990, 1989.

\end{minipage}



⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -