📄 renyi.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{renyi}\hspace*{-1.6cm}{\Large \bf renyi}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Measure Renyi information.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}R = renyi(tfr)R = renyi(tfr,t)R = renyi(tfr,t,f)R = renyi(tfr,t,f,alpha)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm} {\ty renyi} measures the Renyi information relative to a 2-D density function {\ty tfr} (which can be eventually a time-frequency representation). Renyi information of order $\alpha$ is defined as\,:\begin{eqnarray*}R_x^{\alpha} = \frac{1}{1-\alpha}\log_2\left\{\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}\mbox{tfr}_x^{\alpha}(t,\nu)\ dt\ d\nu\right\}\end{eqnarray*}The result produced by this measure is expressed in {\it bits} : if oneelementary signal yields zero bit of information ($2^0$), then two wellseparated elementary signals will yield one bit of information ($2^1$),four well separated elementary signals will yield two bits of information($2^2$), and so on.\\\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}Name & Description & Default value\\\hline {\ty tfr} & {\ty (M,N)} 2-D density function (or mass function). Eventually {\ty tfr} can be a time-frequency representation, in which case its first row must correspond to the lower frequencies\\ {\ty t} & abscissa vector parametrizing the {\ty tfr} matrix. {\ty t} can be a non-uniform sampled vector (eventually a time vector) & {\ty (1:N)}\\ {\ty f} & ordinate vector parametrizing the {\ty tfr} matrix. {\ty f} can be a non-uniform sampled vector (eventually a frequency vector) & {\ty (1:M)}\\ {\ty alpha} & rank of the Renyi measure & {\ty 3}\\ \hline {\ty R} & the alpha-rank Renyi measure (in bits if {\ty tfr} is a time- frequency matrix).\\\hline\end{tabular*}\end{minipage}\newpage{\bf \large \fontfamily{cmss}\selectfont Examples}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim} s=atoms(64,[32,.25,16,1]); [tfr,t,f]=tfrsp(s); R1=renyi(tfr,t,f,3) ans = 0.9861 s=atoms(64,[16,.2,16,1;48,.3,16,1]); [tfr,t,f]=tfrsp(s); R2=renyi(tfr,t,f,3) ans = 1.9890 \end{verbatim}We can see that if {\ttfamily R} is set to 0 for one elementary atom bysubtracting {\ttfamily R1}, we obtain a result close to 1 bit for two atoms({\ttfamily R2-R1}=1.0029).\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Reference}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}[1] W. Williams, M. Brown, A. Hero III, ``Uncertainty, information and time-frequency distributions'', SPIE Advanced Signal Processing Algorithms, Architectures and Implementations II, Vol. 1566, pp. 144-156, 1991.\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -