📄 tfrdfla.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\renewcommand{\footnoterule}{}
\markright{tfrdfla}
\hspace*{-1.6cm}{\Large \bf tfrdfla}
\vspace*{-.4cm}
\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}
\vspace*{.2cm}
{\bf \large \fontfamily{cmss}\selectfont Purpose}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
D-Flandrin time-frequency distribution.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
[tfr,t,f] = tfrdfla(x)
[tfr,t,f] = tfrdfla(x,t)
[tfr,t,f] = tfrdfla(x,t,fmin,fmax)
[tfr,t,f] = tfrdfla(x,t,fmin,fmax,N)
[tfr,t,f] = tfrdfla(x,t,fmin,fmax,N,trace)
\end{verbatim}
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Description}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
{\ty tfrdfla} generates the auto- or cross- D-Flandrin
distribution. This distribution has the
following expression :
\begin{eqnarray*}
D_x(t,\nu)=\nu\ \int_{-\infty}^{+\infty} (1-(\gamma/4)^2)\
X\left(\nu (1-\gamma/4)^2\right)\ X^*\left(\nu (1+\gamma/4)^2\right)\
e^{-j2\pi\gamma t\nu}\ d\gamma.
\end{eqnarray*}
\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}
Name & Description & Default value\\
\hline
{\ty x} & signal (in time) to be analyzed. If {\ty x=[x1 x2]}, {\ty tfrdfla}
computes the cross-D-Flandrin distribution ({\ty Nx=length(X)})\\
{\ty t} & time instant(s) on which the {\ty tfr} is evaluated & {\ty (1:Nx)}\\
{\ty fmin, fmax} & respectively lower and upper frequency bounds of
the analyzed signal. These parameters fix the equivalent
frequency bandwidth (expressed in Hz). When unspecified, you
have to enter them at the command line from the plot of the
spectrum. {\ty fmin} and {\ty fmax} must be $>0$ and $\leq 0.5$\\
{\ty N} & number of analyzed voices & auto\footnote{This value,
determined from {\ty fmin} and {\ty fmax}, is the
next-power-of-two of the minimum value checking the non-overlapping
condition in the fast Mellin transform.}\\
{\ty trace} & if nonzero, the progression of the algorithm is shown
& {\ty 0}\\
\hline\end{tabular*}\end{minipage} \newpage
\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}
\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}
Name & Description & Default value\\\hline
\hline {\ty tfr} & time-frequency matrix containing the coefficients of the
decomposition (abscissa correspond to uniformly sampled
time, and ordonates correspond to a geometrically sampled
frequency). First row of {\ty tfr} corresponds to the lowest
frequency\\
{\ty f} & vector of normalized frequencies (geometrically sampled
from {\ty fmin} to {\ty fmax})\\
\hline
\end{tabular*}
\vspace*{.2cm}
When called without output arguments, {\ty tfrdfla} runs {\ty tfrqview}.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Example}
\begin{verbatim}
sig=altes(64,0.1,0.45);
tfrdfla(sig);
\end{verbatim}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont See Also}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
all the {\ty tfr*} functions.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Reference}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
[1] P. Flandrin ``Temps-fr閝uence'' Trait
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -