⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ifestar2.tex

📁 时频分析的工具包
💻 TEX
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{ifestar2}\hspace*{-1.6cm}{\Large \bf ifestar2}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Instantaneous frequency estimation using AR2 modelisation. \end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}[fnorm,t2,ratio] = ifestar2(x)[fnorm,t2,ratio] = ifestar2(x,t)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}        {\ty ifestar2} computes an estimation of the instantaneous        frequency of the real signal {\ty x} at time instant(s) {\ty t}        using an auto-regressive model of order 2. The result {\ty fnorm}        lies between 0.0 and 0.5. This estimate is based only on the 4 last        signal points, and has therefore an approximate delay of 2.5        points. \\ \hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}Name & Description & Default value\\\hline        {\ty x}     & real signal to be analyzed\\        {\ty t}     & time instants (must be greater than 4) &         {\ty (4:length(x))}\\\hline  {\ty fnorm} & output (normalized) instantaneous frequency\\        {\ty t2}    & time instants coresponding to {\ty fnorm}. Since the                algorithm do not systematically give a value, {\ty t2} is                 different from {\ty t} in general\\        {\ty ratio} & proportion of instants where the algorithm yields                an estimation\\\hline\end{tabular*}\vspace*{.1cm}This estimator is the causal version of the estimator called "4 pointsProny estimator" in article [1].\end{minipage}\vspace*{1cm}{\bf \large \fontfamily{cmss}\selectfont Example}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Here is a comparison between the instantaneous frequency estimated by {\tyifestar2} and the exact instantaneous frequency law, obtained on asinusoidal frequency modulation :\begin{verbatim}         [x,if]=fmsin(100,0.1,0.4); x=real(x);          [if2,t]=ifestar2(x);         plot(t,if(t),t,if2);\end{verbatim}The estimation follows quite correctly the right law, but with a small biasand with some weak oscillations.\end{minipage}%\newpage{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}instfreq, kaytth, sgrpdlay.\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Reference}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}[1] Prony "Instantaneous frequency estimation using linear prediction with	comparisons to the dESAs", IEEE Signal Processing Letters, Vol 3,	No 2, p 54-56, February 1996.\end{minipage}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -