📄 ifestar2.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{ifestar2}\hspace*{-1.6cm}{\Large \bf ifestar2}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Instantaneous frequency estimation using AR2 modelisation. \end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}[fnorm,t2,ratio] = ifestar2(x)[fnorm,t2,ratio] = ifestar2(x,t)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm} {\ty ifestar2} computes an estimation of the instantaneous frequency of the real signal {\ty x} at time instant(s) {\ty t} using an auto-regressive model of order 2. The result {\ty fnorm} lies between 0.0 and 0.5. This estimate is based only on the 4 last signal points, and has therefore an approximate delay of 2.5 points. \\ \hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}Name & Description & Default value\\\hline {\ty x} & real signal to be analyzed\\ {\ty t} & time instants (must be greater than 4) & {\ty (4:length(x))}\\\hline {\ty fnorm} & output (normalized) instantaneous frequency\\ {\ty t2} & time instants coresponding to {\ty fnorm}. Since the algorithm do not systematically give a value, {\ty t2} is different from {\ty t} in general\\ {\ty ratio} & proportion of instants where the algorithm yields an estimation\\\hline\end{tabular*}\vspace*{.1cm}This estimator is the causal version of the estimator called "4 pointsProny estimator" in article [1].\end{minipage}\vspace*{1cm}{\bf \large \fontfamily{cmss}\selectfont Example}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Here is a comparison between the instantaneous frequency estimated by {\tyifestar2} and the exact instantaneous frequency law, obtained on asinusoidal frequency modulation :\begin{verbatim} [x,if]=fmsin(100,0.1,0.4); x=real(x); [if2,t]=ifestar2(x); plot(t,if(t),t,if2);\end{verbatim}The estimation follows quite correctly the right law, but with a small biasand with some weak oscillations.\end{minipage}%\newpage{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}instfreq, kaytth, sgrpdlay.\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Reference}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}[1] Prony "Instantaneous frequency estimation using linear prediction with comparisons to the dESAs", IEEE Signal Processing Letters, Vol 3, No 2, p 54-56, February 1996.\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -