⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zak.tex

📁 时频分析的工具包
💻 TEX
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{zak}
\hspace*{-1.6cm}{\Large \bf zak}

\vspace*{-.4cm}
\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}
\vspace*{.2cm}

{\bf \large \fontfamily{cmss}\selectfont Purpose}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Zak transform.
\end{minipage}
\vspace*{.5cm}

{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
dzt = zak(sig)
dzt = zak(sig,N)
dzt = zak(sig,N,M)
\end{verbatim}
\end{minipage}
\vspace*{.5cm}

{\bf \large \fontfamily{cmss}\selectfont Description}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
        {\ty zak} computes the Zak transform of a signal. Its definition is
given by
\[Z_{sig}(t,\nu)=\sum_{n=-\infty}^{+\infty} sig(t+n)\ e^{-j2\pi n\nu}.\]

\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}
Name & Description & Default value\\
\hline
        {\ty sig} & Signal to be analyzed {\ty (length(sig)=N1)}\\
        {\ty N}   & number of Zak coefficients in time ({\ty N1} must be a multiple
              of {\ty N})          & {\ty divider(N1)}\\
        {\ty M}   & number of Zak coefficients in frequency ({\ty N1} must be a
              multiple of {\ty M}) & {\ty N1/N}\\
 \hline {\ty dzt} & Output matrix {\ty (N,M)} containing the discrete Zak transform\\

\hline
\end{tabular*}

\end{minipage}
\vspace*{1cm}

{\bf \large \fontfamily{cmss}\selectfont Example}
\begin{verbatim}
         sig=fmlin(256); 
         DZT=zak(sig);
         imagesc(DZT);
\end{verbatim}
\vspace*{.5cm}

{\bf \large \fontfamily{cmss}\selectfont See Also}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
izak, tfrgabor.
\end{verbatim}
\end{minipage}
\vspace*{.5cm}


{\bf \large \fontfamily{cmss}\selectfont Reference}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
[1] L. Auslander, I. Gertner, R. Tolimieri, ``The Discrete Zak Transform
Application to Time-Frequency Analysis and Synthesis of Nonstationary
Signals'' IEEE Trans. on Signal Proc., Vol. 39, No. 4, pp. 825-835, April
1991.
\end{minipage}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -