⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sbgcop.mcmc.html

📁 sbgcop: Semiparametric Bayesian Gaussian copula estimation This package estimates parameters of a G
💻 HTML
字号:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><title>R: Semiparametric Bayesian Gaussian copula estimation</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" type="text/css" href="../../R.css">
</head><body>

<table width="100%" summary="page for sbgcop.mcmc {sbgcop}"><tr><td>sbgcop.mcmc {sbgcop}</td><td align="right">R Documentation</td></tr></table>
<h2>Semiparametric Bayesian Gaussian copula estimation</h2>


<h3>Description</h3>

<p>
<code>sbgcop.mcmc</code> is used to semiparametrically estimate the
parameters of a Gaussian copula. It can be used for posterior
inference on the copula parameters, or for imputation of
missing values in matrix-valued data.
</p>


<h3>Usage</h3>

<pre>
sbgcop.mcmc(Y, S0 = diag(dim(Y)[2]), n0 = dim(Y)[2] + 2, nsamp = 100,
  odens = max(1, round(nsamp/1000)), seed = 1, verb = TRUE)
</pre>


<h3>Arguments</h3>

<table summary="R argblock">
<tr valign="top"><td><code>Y</code></td>
<td>
an n x p matrix. Missing values are allowed.   </td></tr>
<tr valign="top"><td><code>S0</code></td>
<td>
a p x p positive definite matrix </td></tr>
<tr valign="top"><td><code>n0</code></td>
<td>
a positive integer </td></tr>
<tr valign="top"><td><code>nsamp</code></td>
<td>
number of iterations of the Markov chain. </td></tr>
<tr valign="top"><td><code>odens</code></td>
<td>
output density: number of  iterations  between
saved samples.  </td></tr>
<tr valign="top"><td><code>seed</code></td>
<td>
an integer for the random seed</td></tr>
<tr valign="top"><td><code>verb</code></td>
<td>
print progress of MCMC(TRUE/FALSE)? </td></tr>
</table>

<h3>Details</h3>

<p>
This function produces MCMC samples from the posterior
distribution of a correlation matrix, using a scaled 
inverse-Wishart prior distribution and an extended rank
likelihood. It also provides imputation for missing values 
in a multivariate dataset.
</p>


<h3>Value</h3>

<p>
An object of class <code>psgc</code> containing the following components:
</p>
<table summary="R argblock">
<tr valign="top"><td><code>C.psamp </code></td>
<td>
an array of size p x p x <code>nsamp/odens</code>,
consisting of posterior samples of the correlation matrix.  </td></tr>
<tr valign="top"><td><code>Y.pmean </code></td>
<td>
the original datamatrix with imputed
values replacing missing data   </td></tr>
<tr valign="top"><td><code>LPC </code></td>
<td>
the log-probability of the latent variables at each
saved sample. Used for diagnostic purposes.   </td></tr>
</table>

<h3>Author(s)</h3>

<p>
Peter Hoff
</p>


<h3>References</h3>

<p>
http://www.stat.washington.edu/hoff/
</p>


<h3>Examples</h3>

<pre>
fit&lt;-sbgcop.mcmc(swiss)
summary(fit)
plot(fit)
</pre>



<hr><div align="center">[Package <em>sbgcop</em> version 0.95 <a href="00Index.html">Index]</a></div>

</body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -