⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sbgcop.mcmc.rd

📁 sbgcop: Semiparametric Bayesian Gaussian copula estimation This package estimates parameters of a G
💻 RD
字号:
\name{sbgcop.mcmc}\alias{sbgcop.mcmc}\alias{plot.psgc}\alias{summary.psgc}\alias{print.sum.psgc}\title{Semiparametric Bayesian Gaussian copula estimation}\description{\code{sbgcop.mcmc} is used to semiparametrically estimate theparameters of a Gaussian copula. It can be used for posteriorinference on the copula parameters, or for imputation ofmissing values in matrix-valued data.}\usage{sbgcop.mcmc(Y, S0 = diag(dim(Y)[2]), n0 = dim(Y)[2] + 2, nsamp = 100,  odens = max(1, round(nsamp/1000)), seed = 1, verb = TRUE)}\arguments{  \item{Y}{ an n x p matrix. Missing values are allowed.   }  \item{S0}{ a p x p positive definite matrix }  \item{n0}{ a positive integer }  \item{nsamp}{ number of iterations of the Markov chain. }  \item{odens}{ output density: number of  iterations  between       saved samples.  } \item{seed}{ an integer for the random seed} \item{verb}{ print progress of MCMC(TRUE/FALSE)? }}\details{This function produces MCMC samples from the posteriordistribution of a correlation matrix, using a scaled inverse-Wishart prior distribution and an extended ranklikelihood. It also provides imputation for missing values in a multivariate dataset. }\value{ An object of class \code{psgc} containing the following components:\item{C.psamp }{an array of size p x p x \code{nsamp/odens},   consisting of posterior samples of the correlation matrix.  }  \item{Y.pmean }{the original datamatrix with imputed                   values replacing missing data   }  \item{LPC }{the log-probability of the latent variables at each      saved sample. Used for diagnostic purposes.   }}\references{http://www.stat.washington.edu/hoff/}\author{Peter Hoff }\examples{fit<-sbgcop.mcmc(swiss)summary(fit)plot(fit)}\keyword{ multivariate }\keyword{ models }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -