📄 sbgcop.mcmc.rd
字号:
\name{sbgcop.mcmc}\alias{sbgcop.mcmc}\alias{plot.psgc}\alias{summary.psgc}\alias{print.sum.psgc}\title{Semiparametric Bayesian Gaussian copula estimation}\description{\code{sbgcop.mcmc} is used to semiparametrically estimate theparameters of a Gaussian copula. It can be used for posteriorinference on the copula parameters, or for imputation ofmissing values in matrix-valued data.}\usage{sbgcop.mcmc(Y, S0 = diag(dim(Y)[2]), n0 = dim(Y)[2] + 2, nsamp = 100, odens = max(1, round(nsamp/1000)), seed = 1, verb = TRUE)}\arguments{ \item{Y}{ an n x p matrix. Missing values are allowed. } \item{S0}{ a p x p positive definite matrix } \item{n0}{ a positive integer } \item{nsamp}{ number of iterations of the Markov chain. } \item{odens}{ output density: number of iterations between saved samples. } \item{seed}{ an integer for the random seed} \item{verb}{ print progress of MCMC(TRUE/FALSE)? }}\details{This function produces MCMC samples from the posteriordistribution of a correlation matrix, using a scaled inverse-Wishart prior distribution and an extended ranklikelihood. It also provides imputation for missing values in a multivariate dataset. }\value{ An object of class \code{psgc} containing the following components:\item{C.psamp }{an array of size p x p x \code{nsamp/odens}, consisting of posterior samples of the correlation matrix. } \item{Y.pmean }{the original datamatrix with imputed values replacing missing data } \item{LPC }{the log-probability of the latent variables at each saved sample. Used for diagnostic purposes. }}\references{http://www.stat.washington.edu/hoff/}\author{Peter Hoff }\examples{fit<-sbgcop.mcmc(swiss)summary(fit)plot(fit)}\keyword{ multivariate }\keyword{ models }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -