⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 threadpool.c

📁 Apache 2.0.63 is the current stable version of the 2.0 series, and is recommended over any previous
💻 C
📖 第 1 页 / 共 5 页
字号:
            threads_created++;
            if (threads_created == 1) {
                /* now that we have a worker thread, it makes sense to create
                 * a listener thread (we don't want a listener without a worker!)
                 */
                create_listener_thread(ts);
            }
        }
        if (start_thread_may_exit || threads_created == ap_threads_per_child) {
            break;
        }
        /* wait for previous generation to clean up an entry */
        apr_sleep(1 * APR_USEC_PER_SEC);
        ++loops;
        if (loops % 120 == 0) { /* every couple of minutes */
            if (prev_threads_created == threads_created) {
                ap_log_error(APLOG_MARK, APLOG_DEBUG, 0, ap_server_conf,
                             "child %" APR_PID_T_FMT " isn't taking over "
                             "slots very quickly (%d of %d)",
                             ap_my_pid, threads_created, ap_threads_per_child);
            }
            prev_threads_created = threads_created;
        }
    }
    
    /* What state should this child_main process be listed as in the 
     * scoreboard...?
     *  ap_update_child_status_from_indexes(my_child_num, i, SERVER_STARTING, 
     *                                      (request_rec *) NULL);
     * 
     *  This state should be listed separately in the scoreboard, in some kind
     *  of process_status, not mixed in with the worker threads' status.   
     *  "life_status" is almost right, but it's in the worker's structure, and 
     *  the name could be clearer.   gla
     */
    apr_thread_exit(thd, APR_SUCCESS);
    return NULL;
}

static void join_workers(apr_thread_t *listener, apr_thread_t **threads)
{
    int i;
    apr_status_t rv, thread_rv;

    if (listener) {
        int iter;

        /* deal with a rare timing window which affects waking up the
         * listener thread...  if the signal sent to the listener thread
         * is delivered between the time it verifies that the
         * listener_may_exit flag is clear and the time it enters a
         * blocking syscall, the signal didn't do any good...  work around
         * that by sleeping briefly and sending it again
         */

        iter = 0;
        while (iter < 10 && 
#ifdef HAVE_PTHREAD_KILL
               pthread_kill(*listener_os_thread, 0)
#else
               kill(ap_my_pid, 0)
#endif
               == 0) {
            /* listener not dead yet */
            apr_sleep(APR_USEC_PER_SEC / 2);
            wakeup_listener();
            ++iter;
        }
        if (iter >= 10) {
            ap_log_error(APLOG_MARK, APLOG_DEBUG, 0, ap_server_conf,
                         "the listener thread didn't exit");
        }
        else {
            rv = apr_thread_join(&thread_rv, listener);
            if (rv != APR_SUCCESS) {
                ap_log_error(APLOG_MARK, APLOG_CRIT, rv, ap_server_conf,
                             "apr_thread_join: unable to join listener thread");
            }
        }
    }
    
    for (i = 0; i < ap_threads_per_child; i++) {
        if (threads[i]) { /* if we ever created this thread */
            rv = apr_thread_join(&thread_rv, threads[i]);
            if (rv != APR_SUCCESS) {
                ap_log_error(APLOG_MARK, APLOG_CRIT, rv, ap_server_conf,
                             "apr_thread_join: unable to join worker "
                             "thread %d",
                             i);
            }
        }
    }
}

static void join_start_thread(apr_thread_t *start_thread_id)
{
    apr_status_t rv, thread_rv;

    start_thread_may_exit = 1; /* tell it to give up in case it is still 
                                * trying to take over slots from a 
                                * previous generation
                                */
    rv = apr_thread_join(&thread_rv, start_thread_id);
    if (rv != APR_SUCCESS) {
        ap_log_error(APLOG_MARK, APLOG_CRIT, rv, ap_server_conf,
                     "apr_thread_join: unable to join the start "
                     "thread");
    }
}

static void child_main(int child_num_arg)
{
    apr_thread_t **threads;
    apr_status_t rv;
    thread_starter *ts;
    apr_threadattr_t *thread_attr;
    apr_thread_t *start_thread_id;

    mpm_state = AP_MPMQ_STARTING; /* for benefit of any hooks that run as this
                                   * child initializes
                                   */
    ap_my_pid = getpid();
    ap_fatal_signal_child_setup(ap_server_conf);
    apr_pool_create(&pchild, pconf);

    /*stuff to do before we switch id's, so we have permissions.*/
    ap_reopen_scoreboard(pchild, NULL, 0);

    rv = SAFE_ACCEPT(apr_proc_mutex_child_init(&accept_mutex, ap_lock_fname,
                                               pchild));
    if (rv != APR_SUCCESS) {
        ap_log_error(APLOG_MARK, APLOG_EMERG, rv, ap_server_conf,
                     "Couldn't initialize cross-process lock in child");
        clean_child_exit(APEXIT_CHILDFATAL);
    }

    if (unixd_setup_child()) {
        clean_child_exit(APEXIT_CHILDFATAL);
    }

    ap_run_child_init(pchild, ap_server_conf);

    /* done with init critical section */

    /* Just use the standard apr_setup_signal_thread to block all signals
     * from being received.  The child processes no longer use signals for
     * any communication with the parent process.
     */
    rv = apr_setup_signal_thread();
    if (rv != APR_SUCCESS) {
        ap_log_error(APLOG_MARK, APLOG_EMERG, rv, ap_server_conf,
                     "Couldn't initialize signal thread");
        clean_child_exit(APEXIT_CHILDFATAL);
    }

    if (ap_max_requests_per_child) {
        requests_this_child = ap_max_requests_per_child;
    }
    else {
        /* coding a value of zero means infinity */
        requests_this_child = INT_MAX;
    }
    
    /* Setup worker threads */

    /* clear the storage; we may not create all our threads immediately, 
     * and we want a 0 entry to indicate a thread which was not created
     */
    threads = (apr_thread_t **)calloc(1, 
                                sizeof(apr_thread_t *) * ap_threads_per_child);
    if (threads == NULL) {
        ap_log_error(APLOG_MARK, APLOG_ALERT, errno, ap_server_conf,
                     "malloc: out of memory");
        clean_child_exit(APEXIT_CHILDFATAL);
    }

    ts = (thread_starter *)apr_palloc(pchild, sizeof(*ts));

    apr_threadattr_create(&thread_attr, pchild);
    /* 0 means PTHREAD_CREATE_JOINABLE */
    apr_threadattr_detach_set(thread_attr, 0);

    ts->threads = threads;
    ts->listener = NULL;
    ts->child_num_arg = child_num_arg;
    ts->threadattr = thread_attr;

    rv = apr_thread_create(&start_thread_id, thread_attr, start_threads,
                           ts, pchild);
    if (rv != APR_SUCCESS) {
        ap_log_error(APLOG_MARK, APLOG_ALERT, rv, ap_server_conf,
                     "apr_thread_create: unable to create worker thread");
        /* In case system resources are maxxed out, we don't want
           Apache running away with the CPU trying to fork over and
           over and over again if we exit. */
        apr_sleep(10 * APR_USEC_PER_SEC);
        clean_child_exit(APEXIT_CHILDFATAL);
    }

    mpm_state = AP_MPMQ_RUNNING;
    
    /* If we are only running in one_process mode, we will want to
     * still handle signals. */
    if (one_process) {
        /* Block until we get a terminating signal. */
        apr_signal_thread(check_signal);
        /* make sure the start thread has finished; signal_threads() 
         * and join_workers() depend on that
         */
        /* XXX join_start_thread() won't be awakened if one of our
         *     threads encounters a critical error and attempts to
         *     shutdown this child
         */
        join_start_thread(start_thread_id);
        signal_threads(ST_UNGRACEFUL); /* helps us terminate a little more
                           * quickly than the dispatch of the signal thread
                           * beats the Pipe of Death and the browsers
                           */
        /* A terminating signal was received. Now join each of the
         * workers to clean them up.
         *   If the worker already exited, then the join frees
         *   their resources and returns.
         *   If the worker hasn't exited, then this blocks until
         *   they have (then cleans up).
         */
        join_workers(ts->listener, threads);
    }
    else { /* !one_process */
        /* remove SIGTERM from the set of blocked signals...  if one of
         * the other threads in the process needs to take us down
         * (e.g., for MaxRequestsPerChild) it will send us SIGTERM
         */
        unblock_signal(SIGTERM);
        apr_signal(SIGTERM, dummy_signal_handler);
        /* Watch for any messages from the parent over the POD */
        while (1) {
            rv = ap_mpm_pod_check(pod);
            if (rv == AP_NORESTART) {
                /* see if termination was triggered while we slept */
                switch(terminate_mode) {
                case ST_GRACEFUL:
                    rv = AP_GRACEFUL;
                    break;
                case ST_UNGRACEFUL:
                    rv = AP_RESTART;
                    break;
                }
            }
            if (rv == AP_GRACEFUL || rv == AP_RESTART) {
                /* make sure the start thread has finished; 
                 * signal_threads() and join_workers depend on that
                 */
                join_start_thread(start_thread_id);
                signal_threads(rv == AP_GRACEFUL ? ST_GRACEFUL : ST_UNGRACEFUL);
                break;
            }
        }

        if (rv == AP_GRACEFUL) {
            /* A terminating signal was received. Now join each of the
             * workers to clean them up.
             *   If the worker already exited, then the join frees
             *   their resources and returns.
             *   If the worker hasn't exited, then this blocks until
             *   they have (then cleans up).
             */
            join_workers(ts->listener, threads);
        }
    }

    free(threads);

    clean_child_exit(resource_shortage ? APEXIT_CHILDSICK : 0);
}

static int make_child(server_rec *s, int slot) 
{
    int pid;

    if (slot + 1 > ap_max_daemons_limit) {
        ap_max_daemons_limit = slot + 1;
    }

    if (one_process) {
        set_signals();
        ap_scoreboard_image->parent[slot].pid = getpid();
        child_main(slot);
    }

    if ((pid = fork()) == -1) {
        ap_log_error(APLOG_MARK, APLOG_ERR, errno, s, 
                     "fork: Unable to fork new process");

        /* fork didn't succeed. Fix the scoreboard or else
         * it will say SERVER_STARTING forever and ever
         */
        ap_update_child_status_from_indexes(slot, 0, SERVER_DEAD, NULL);

        /* In case system resources are maxxed out, we don't want
           Apache running away with the CPU trying to fork over and
           over and over again. */
        apr_sleep(10 * APR_USEC_PER_SEC);

        return -1;
    }

    if (!pid) {
#ifdef HAVE_BINDPROCESSOR
        /* By default, AIX binds to a single processor.  This bit unbinds
         * children which will then bind to another CPU.
         */
        int status = bindprocessor(BINDPROCESS, (int)getpid(),
                               PROCESSOR_CLASS_ANY);
        if (status != OK)
            ap_log_error(APLOG_MARK, APLOG_WARNING, errno, 
                         ap_server_conf,
                         "processor unbind failed %d", status);
#endif
        RAISE_SIGSTOP(MAKE_CHILD);

        apr_signal(SIGTERM, just_die);
        child_main(slot);

        clean_child_exit(0);
    }
    /* else */
    ap_scoreboard_image->parent[slot].quiescing = 0;
    ap_scoreboard_image->parent[slot].pid = pid;
    return 0;
}

/* start up a bunch of children */
static void startup_children(int number_to_start)
{
    int i;

    for (i = 0; number_to_start && i < ap_daemons_limit; ++i) {
        if (ap_scoreboard_image->parent[i].pid != 0) {
            continue;
        }
        if (make_child(ap_server_conf, i) < 0) {
            break;
        }
        --number_to_start;
    }
}


/*
 * idle_spawn_rate is the number of children that will be spawned on the
 * next maintenance cycle if there aren't enough idle servers.  It is
 * doubled up to MAX_SPAWN_RATE, and reset only when a cycle goes by
 * without the need to spawn.
 */
static int idle_spawn_rate = 1;
#ifndef MAX_SPAWN_RATE
#define MAX_SPAWN_RATE        (32)
#endif
static int hold_off_on_exponential_spawning;

static void perform_idle_server_maintenance(void)
{
    int i, j;
    int idle_thread_count;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -