📄 unitary matrix q_lmd_diag.m
字号:
%
% This function obtains a unitary matrix Q such that: d=diag(Q'*diag(lmd)*Q).
% In other words, it gives a way to generate a matrix with given eigenvalues and diagonal elements.
%
% By Daniel Perez Palomar (last revision: May 10, 2004).
% Feel free to distribute this file as it is (without including any modifications).
% Please, email any improvement or error to Daniel.P.Palomar@ieee.org or danielp@princeton.edu
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Details of the function:
% ------------------------
%
% It uses the method in [Viswanath and Anantharam IT99] and also the method
% in [Marshall79] for verification purposes. See [Palomar-PhD2003] for details.
%
% INPUTS: Vectors of eigenvalues and diagonal elements, lmd and d, in
% decreasing order (of course, lmd must majorize d, otherwise there is no
% such unitary matrix Q).
%
% OUTPUT: Unitary matrix Q such that: d=diag(Q'*diag(lmd)*Q).
%
function Q_acc = Q_lmd_diag(lmd,d)
EPS=1e-12; %small numerical error allowed in the comparisons
N=length(lmd);
if any(flipud(sort(lmd))~=lmd), error('lmd is not in decreasing order !!'); end
if any(flipud(sort(d))~=d), error('d is not in decreasing order !!'); end
if abs(sum(lmd)-sum(d))>EPS, error('sum(lmd)!=sum(d) !!'); end
for n=1:N, if sum(lmd(1:n))<sum(d(1:n))-EPS, error('lmd does not majorize d !!'); end; end % if sum(lmd(1:n)) < sum(d(1:n))
mask=ones(N); for i1=1:N, for i2=1:i1-1, mask(i1,i2)=-1; end; end
T_acc=eye(N);
Q_acc=eye(N);
n=N;
while 1,
%
%Find both indexes
%
while n>=1 && abs(lmd(n)-d(n))<EPS, n=n-1; end %if n>1 & lmd(n)==d(n)
if n<=1, break; end; %finish method
k=n-1;
while lmd(k)-d(k)<=EPS, k=k-1; if k<1, error('k==0 in Q_lmd_diag !!'); end; end %if lmd(k)<=d(k)
%
% Find alpha
%
%Find alpha so that: (1-alpha)*lmd(k) + alpha*lmd(n) = d(n)
alpha = (d(n)-lmd(k))/(lmd(n)-lmd(k));
%check whether this alpha is too large
if alpha*lmd(k) + (1-alpha)*lmd(n) < d(k),
alpha = (d(k)-lmd(n))/(lmd(k)-lmd(n));
end
%Using the algorithm in [Marshall79]
alpha_bis=1-min(d(n)-lmd(n),lmd(k)-d(k))/(lmd(k)-lmd(n));
if abs(alpha_bis-alpha)>1e-12, error('Algorithms in [Marshall79] and [Viswanath99] differ !!'); end
%
% T-transform for the transformaton of the vector
%
T=eye(N);
T(k,k)=alpha; T(n,n)=alpha;
T(k,n)=1-alpha; T(n,k)=1-alpha;
lmd=T*lmd;
T_acc=T*T_acc;
%unitary matrix for the transformation of the matrix with diagonal elements
Q_acc=Q_acc*(sqrt(T).*mask);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -