📄 tls2561.c
字号:
#pragma DEBUG CODE
//#include <w78le52.h>
#include <reg51.h>
#include <intrins.h>
//#define TWait() _nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();
//#define TWait() _nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_()
//#define TWait() _nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_()
sbit TSDA=P3^4; //2561pin6
sbit TSCL=P3^5; //2561pin4
unsigned char data BriSeg[4];
void TWait(void)
{
unsigned char i=120;
do{
_nop_();
}while(--i);
}
/********************************************/
void TLSStart(void)
{ TSDA=1;
TSCL=1;
TWait();
TSDA=0;
TSCL=0;
TWait();
}
/********************************************/
void TLSStop(void)
{ TSDA=0;
TSCL=0;
TWait();
TSCL=1;
TSDA=1;
}
/********************************************/
void SendTAck(bit ack) //确认接收
{
TSDA=ack;
TSCL=1;
TWait();
TSCL=0;
}
bit TestTAck(void)
{bit ack=0;
TSCL=1;
TWait();
if(TSDA)
ack=1;
TSCL=0;
return ack;
}
TLSSentByte(unsigned char bytedata) //传送一个字节数据
{ unsigned char i=8;
do{
TSDA=bytedata&0x80;
TSCL=1;
TWait();
bytedata<<=1;
TSCL=0;
TWait();
}while(--i);
}
unsigned char TLSReceiveByte(void) //接收一个字节数据
{ unsigned char x,i=8;
TSDA=1;
do
{ TSCL=1;
TWait();
x<<=1;
if(TSDA)
x++;
TSCL=0;
TWait();
}while(--i);
return(x);
}
unsigned char TLSWriteReg(unsigned char addr,unsigned char regdata)
{unsigned char sign;
sign=0;
TLSStart();
TLSSentByte(0x72);
if(TestTAck())
sign+=0x01;
TLSSentByte(0x80|addr);
if(TestTAck())
sign+=0x02;
TLSSentByte(regdata);
if(TestTAck())
sign+=0x04;
TLSStop();
return sign;
}
unsigned char ReadRegMuti(unsigned char data *p,unsigned char addr,unsigned char i)
{
unsigned char sign=0;
TLSStart();
TLSSentByte(0x72);
if(TestTAck())
sign+=0x01;
TLSSentByte(0x80+addr);
if(TestTAck())
sign+=0x02;
TLSStart();
TLSSentByte(0x73);
if(TestTAck())
sign+=0x04;
for(;;)
{
*p=TLSReceiveByte();
p++;
i--;
if(!i)
break;
SendTAck(0);
}
SendTAck(1);
TLSStop();
return(sign);
}
void TLS2561Init(void)
{
TLSWriteReg(0,3);//03,power up;00,power down
TLSWriteReg(1,1);//resv ,resv,resv,resv,gain,manual,resv,integ0,integ1
TLSWriteReg(6,0x00);
}
/*
For 0 < CH1/CH0 =< 0.50 Lux = 0.0304 * CH0 - 0.062 * CH0 * ((CH1/CH0)1.4)
For 0.50 < CH1/CH0 =< 0.61 Lux = 0.0224 * CH0 - 0.031 * CH1
For 0.61 < CH1/CH0 =< 0.80 Lux = 0.0128 * CH0 - 0.0153 * CH1
For 0.80 < CH1/CH0 =< 1.30 Lux = 0.00146* CH0 - 0.00112* CH1
For CH1/CH0 > 1.30 Lux = 0
*/
#define LUX_SCALE 14 // scale by 2^14
#define RATIO_SCALE 9 // scale ratio by 2^9
#define CH_SCALE 10 // scale channel values by 2^10
#define CHSCALE_TINT0 0x7517 // 322/11 * 2^CH_SCALE
#define CHSCALE_TINT1 0x0fe7 // 322/81 * 2^CH_SCALE
//...................................................
// T Package coefficients
//...................................................
// For Ch1/Ch0=0.00 to 0.50
// Lux/Ch0=0.0304-0.062*((Ch1/Ch0)^1.4)
// piecewise approximation
// For Ch1/Ch0=0.00 to 0.125:
// Lux/Ch0=0.0304-0.0272*(Ch1/Ch0)
//
// For Ch1/Ch0=0.125 to 0.250:
// Lux/Ch0=0.0325-0.0440*(Ch1/Ch0)
//
// For Ch1/Ch0=0.250 to 0.375:
// Lux/Ch0=0.0351-0.0544*(Ch1/Ch0)
//
// For Ch1/Ch0=0.375 to 0.50:
// Lux/Ch0=0.0381-0.0624*(Ch1/Ch0)
//
// For Ch1/Ch0=0.50 to 0.61:
// Lux/Ch0=0.0224-0.031*(Ch1/Ch0)
//
// For Ch1/Ch0=0.61 to 0.80:
// Lux/Ch0=0.0128-0.0153*(Ch1/Ch0)
//
// For Ch1/Ch0=0.80 to 1.30:
// Lux/Ch0=0.00146-0.00112*(Ch1/Ch0)
//
// For Ch1/Ch0>1.3:
// Lux/Ch0=0
//...................................................
#define K1T 0x0040 // 0.125 * 2^RATIO_SCALE
#define B1T 0x01f2 // 0.0304 * 2^LUX_SCALE
#define M1T 0x01be // 0.0272 * 2^LUX_SCALE
#define K2T 0x0080 // 0.250 * 2^RATIO_SCALE
#define B2T 0x0214 // 0.0325 * 2^LUX_SCALE
#define M2T 0x02d1 // 0.0440 * 2^LUX_SCALE
#define K3T 0x00c0 // 0.375 * 2^RATIO_SCALE
#define B3T 0x023f // 0.0351 * 2^LUX_SCALE
#define M3T 0x037b // 0.0544 * 2^LUX_SCALE
#define K4T 0x0100 // 0.50 * 2^RATIO_SCALE
#define B4T 0x0270 // 0.0381 * 2^LUX_SCALE
#define M4T 0x03fe // 0.0624 * 2^LUX_SCALE
#define K5T 0x0138 // 0.61 * 2^RATIO_SCALE
#define B5T 0x016f // 0.0224 * 2^LUX_SCALE
#define M5T 0x01fc // 0.0310 * 2^LUX_SCALE
#define K6T 0x019a // 0.80 * 2^RATIO_SCALE
#define B6T 0x00d2 // 0.0128 * 2^LUX_SCALE
#define M6T 0x00fb // 0.0153 * 2^LUX_SCALE
#define K7T 0x029a // 1.3 * 2^RATIO_SCALE
#define B7T 0x0018 // 0.00146 * 2^LUX_SCALE
#define M7T 0x0012 // 0.00112 * 2^LUX_SCALE
#define K8T 0x029a // 1.3 * 2^RATIO_SCALE
#define B8T 0x0000 // 0.000 * 2^LUX_SCALE
#define M8T 0x0000 // 0.000 * 2^LUX_SCALE
// lux equation approximation without floating point calculations
//////////////////////////////////////////////////////////////////////////////
// Routine: unsigned int CalculateLux(unsigned int ch0, unsigned int ch0, int iType)
//
// Description: Calculate the approximate illuminance (lux) given the raw
// channel values of the TSL2560. The equation if implemented
// as a piece.wise linear approximation.
//
// Arguments: unsigned int iGain . gain, where 0:1X, 1:16X
// unsigned int tInt . integration time, where 0:13.7mS, 1:100mS, 2:402mS,
// 3:Manual
// unsigned int ch0 . raw channel value from channel 0 of TSL2560
// unsigned int ch1 . raw channel value from channel 1 of TSL2560
// unsigned int iType . package type (T or CS)
//
// Return: unsigned int . the approximate illuminance (lux)
//
//////////////////////////////////////////////////////////////////////////////
unsigned int CalculateLux(unsigned int iGain, unsigned int tInt, unsigned int ch0,unsigned int ch1)
{
//........................................................................
// first, scale the channel values depending on the gain and integration time
// 16X, 402mS is nominal.
// scale if integration time is NOT 402 msec
unsigned long chScale;
unsigned long channel1;
unsigned long channel0;
unsigned long temp;
unsigned long lux;
unsigned long ratio1 = 0;
unsigned long ratio;//
unsigned int b, m;
switch (tInt)
{
case 0: chScale = CHSCALE_TINT0;
break; // 13.7 msec
case 1: chScale = CHSCALE_TINT1;
break; // 101 msec
default:chScale = (1 << CH_SCALE);
break; // assume no scaling
}
if (!iGain) // scale if gain is NOT 16X
chScale = chScale << 4; // scale 1X to 16X
// scale the channel values
channel0 = (ch0 * chScale) >> CH_SCALE;
channel1 = (ch1 * chScale) >> CH_SCALE;
//........................................................................
// find the ratio of the channel values (Channel1/Channel0)
// protect against divide by zero
if (channel0 != 0)
ratio1 = (channel1 << (RATIO_SCALE+1)) / channel0;
ratio = (ratio1 + 1) >> 1; // round the ratio value
if ((ratio >= 0) && (ratio <= K1T)) // is ratio <= eachBreak ?
{b=B1T; m=M1T;}
else
if (ratio <= K2T)
{b=B2T; m=M2T;}
else
if (ratio <= K3T)
{b=B3T; m=M3T;}
else
if (ratio <= K4T)
{b=B4T; m=M4T;}
else
if (ratio <= K5T)
{b=B5T; m=M5T;}
else
if (ratio <= K6T)
{b=B6T; m=M6T;}
else
if (ratio <= K7T)
{b=B7T; m=M7T;}
else
if (ratio > K8T)
{b=B8T; m=M8T;}
temp = ((channel0 * b) - (channel1 * m));
if (temp < 0) // do not allow negative lux value
temp = 0;
temp += (1 << (LUX_SCALE-1)); // round lsb (2^(LUX_SCALE.1))
lux = temp >> LUX_SCALE; // strip off fractional portion
return(lux);
}
unsigned int GetBright(void)
{
unsigned int ch0,ch1;
ReadRegMuti(BriSeg,12,4);
ch0=BriSeg[1]*256+BriSeg[0];
ch1=BriSeg[3]*256+BriSeg[2];
if(ch0<3)
{
if(ch0==0&&ch1==0)
TLS2561Init();
return 1;
}
else
{
if((BriSeg[0]&BriSeg[1]&BriSeg[2]&BriSeg[3])==0xff)
return 60000;
else
return CalculateLux(0, 1,ch0,ch1);
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -