📄 sfm_mixed.m
字号:
% Rank based factorization algorithm for multiview reconstruction
% using points and lines features and their incidence relations
% as described in Chapter 9, "An introduction to 3-D Vision"
% by Y. Ma, S. Soatto, J. Kosecka, S. Sastry (MASKS)
% Code distributed free for non-commercial use
% Copyright (c) MASKS, 2003
% Generates multiple synthetic views of a house and computes the
% motion and structure, calibrated case, point features only
% Jana Kosecka, George Mason University, 2002
% ==============================================================
close all; clear;
FRAMES = 3;
PLOTS = 3;
% cube in the object frame
XW = [0 1 1 0 0 1 1 0 0.2 0.8 0.2 0.8 ;
0 0 1 1 0 0 1 1 1.5 1.5 1.5 1.5;
1 1 1 1 0 0 0 0 0.8 0.8 0.2 0.2 ;
1 1 1 1 1 1 1 1 1 1 1 1];
NPOINTS = 12;
XC = zeros(4,NPOINTS,FRAMES);
% initial displacement
Rinit = rot_matrix([1 1 1],0);
Zinit = 5;
Tinit = [ Rinit(1,:) -0.5 ;
Rinit(2,:) -0.5 ;
Rinit(3,:) Zinit;
0 0 0 1];
% first camera coodinates
XC(:,:,1) = Tinit*XW;
Zmax = max(XC(3,:,1));
Zmin = min(XC(3,:,1));
rinc = pi/30;
rot_axis = [1 0 0; 0 -1 0]';
trans_axis = [1 0 0; 0 1 0]';
figure;
subplot(1,PLOTS,1); hold on;
plot3_struct(XC(1,:,1),XC(2,:,1),XC(3,:,1));
plot3(XC(1,:,1),XC(2,:,1),XC(3,:,1),'*');
draw_frame_scaled([diag([1,1,1]), zeros(3,1)],0.5);
title('original motion and 3D structure');
view(220,20);
grid on; axis equal;
% retinal coordinates
xr(:,:,1) = project(XC(:,:,1));
subplot(1,PLOTS,2); hold on;
plot(xr(1,:,1),xr(2,:,1),'.');
[lim(:,:,1), inc] = houselines_mixed(xr(1:2,:,1));
plotLines(lim(:,:,1));
title('retinal coordinates'); axis equal;
% pause;
ratio = 1;
rinc = 10; % rotation increment 20 degrees
Zmid = (Zmax+Zmin)/2;
tinc = 0.5*ratio*Zmid*rinc*pi/180;
for i=2:FRAMES
theta = (i-1)*rinc*pi/180;
r_axis = rot_axis(:,i-1)/norm(rot_axis(:,i-1));
t_axis = trans_axis(:,i-1)/norm(trans_axis(:,i-1));
T_ini(:,i) = (i-1)*tinc*t_axis;
R = rot_matrix(r_axis,theta);
% translation represents origin of the camera frame in the world frame
T(:,:,i) = ([ R T_ini(:,i);
0 0 0 1]);
XC(:,:,i) = T(:,:,i)*XC(:,:,1); % XW;
xr(:,:,i) = project(XC(:,:,i));
[lim(:,:,i),inc] = houselines_mixed(xr(1:2,:,i));
subplot(1,PLOTS,1); hold on;
draw_frame_scaled(T(:,:,i),0.5); axis equal;
subplot(1,PLOTS,2);
plot(xr(1,:,i),xr(2,:,i),'.'); axis equal;
plotLines(lim(:,:,i));
end;
lnum = size(lim,2);
for i = 1:FRAMES
for j = 1:lnum
l = skew([lim(1:2,j,i);1])*[lim(3:4,j,i); 1];
ln(:,j,i) = l/norm(l);
end
end
%------------------------------------------------------------
% MOTION ESTIMATION - given m view n lines - estimate motion
for i = 1:FRAMES
[lim(:,:,i),inc] = houselines_mixed(xr(1:2,:,i));
end
%---------------------------------------------------------------------
% compute initial \alpha's for each point using first two frames only
[vel,R0] = essentialDiscrete(xr(:,:,1),xr(:,:,2));
R_ini(:,:,2) = R0;
T_ini(:,2) = vel;
%-----------------------------------------
% compute alpha's using initial estimates
for i = 1:NPOINTS
alpha(:,i) = -(skew(xr(:,i,2))*T_ini(:,2))'*(skew(xr(:,i,2))*R_ini(:,:,2)* ...
xr(:,i,1))/(norm(skew(xr(:,i,2))*T_ini(:,2)))^2;
lambda(:,i) = 1/alpha(:,i);
end
scale = norm(alpha(:,1)); % set the global scale
alpha = alpha/scale; % normalize everything
%---------------------------------------------------------------------
% Compute initial motion estimates for all frames
% Here do 3 iterations - in real setting look at the change of scales
iter = 1;
while (iter < 5)
for j = 2:FRAMES
P = []; % setup matrix P
for i = 1:NPOINTS
a = [lambda(:,i)* kron(skew(xr(:,i,j)), ...
xr(:,i,1)') skew(xr(:,i,j))];
P = [P; a];
% add all the entries of lines incident to the point
sl = size(inc(i).lines,2);
end;
% pause
[um, sm, vm] = svd(P);
Ti = vm(10:12,12);
Ri = transpose(reshape(vm(1:9,12)',3,3));
[ur,sr,vr] = svd(Ri);
Rhat(:,:,j) = sign(det(ur*vr'))*ur*vr';
Ti = sign(det(ur*vr'))*Ti/((det(sr))^(1/3));
scaled_init_T = T_ini(:,j)/scale;
That(:,j) = Ti;
True = T(1:3,4,j);
end
%---------------------------------------
% recompute alpha's based on all views
lambda_prev = lambda;
for i = 1:NPOINTS
M = []; % setup matrix M
for j = 2:FRAMES % set up Hl matrix for all m views
a = [skew(xr(:,i,j))*Rhat(:,:,j)*xr(:,i,1) skew(xr(:,i,j))*That(:,j)];
M = [M; a];
sl = size(inc(i).lines,2);
for s = 1:sl
li = inc(i).lines(s);
a = [ln(:,li,j)'*Rhat(:,:,j)*xr(:,i,1) ln(:,li,j)'*That(:,j)];
M = [M; a];
end;
end;
lambda(:,i) = -M(:,1)'*M(:,2)/norm(M(:,1))^2;
end;
scale = norm(lambda(:,1)); % set the global scale
lambda = lambda/scale; % normalize everything
iter = iter + 1;
end % end while iter
% final structure with respect to the first frame
XF = [lambda.*xr(1,:,1);
lambda.*xr(2,:,1);
lambda.*xr(3,:,1)];
subplot(1,PLOTS,3); hold on;
plot3(XF(1,:,1),XF(2,:,1),XF(3,:,1),'r*');
plot3_struct(XF(1,:,1), XF(2,:,1), XF(3,:,1));
title('recovered structure');
view(220,20);
grid on; axis equal;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -