📄 bo6-6.cpp
字号:
// bo6-6.cpp 二叉树的三叉链表存储(存储结构由c6-6.h定义)的基本操作(21个)
#define ClearBiTree DestroyBiTree // 清空二叉树和销毁二叉树的操作一样
void InitBiTree(BiPTree &T)
{ // 操作结果:构造空二叉树T
T=NULL;
}
void DestroyBiTree(BiPTree &T)
{ // 初始条件:二叉树T存在。操作结果:销毁二叉树T
if(T) // 非空树
{
if(T->lchild) // 有左孩子
DestroyBiTree(T->lchild); // 销毁左孩子子树
if(T->rchild) // 有右孩子
DestroyBiTree(T->rchild); // 销毁右孩子子树
free(T); // 释放根结点
T=NULL; // 空指针赋0
}
}
void CreateBiTree(BiPTree &T)
{ // 按先序次序输入二叉树中结点的值(可为字符型或整型,在主程中定义),
// 构造三叉链表表示的二叉树T
TElemType ch;
scanf(form,&ch);
if(ch==Nil) // 空
T=NULL;
else
{
T=(BiPTree)malloc(sizeof(BiTPNode)); // 动态生成根结点
if(!T)
exit(OVERFLOW);
T->data=ch; // 给根结点赋值
T->parent=NULL; // 根结点无双亲
CreateBiTree(T->lchild); // 构造左子树
if(T->lchild) // 有左孩子
T->lchild->parent=T; // 给左孩子的双亲域赋值
CreateBiTree(T->rchild); // 构造右子树
if(T->rchild) // 有右孩子
T->rchild->parent=T; // 给右孩子的双亲域赋值
}
}
Status BiTreeEmpty(BiPTree T)
{ // 初始条件:二叉树T存在。操作结果:若T为空二叉树,则返回TRUE,否则FALSE
if(T)
return FALSE;
else
return TRUE;
}
int BiTreeDepth(BiPTree T)
{ // 初始条件:二叉树T存在。操作结果:返回T的深度
int i,j;
if(!T)
return 0; // 空树深度为0
if(T->lchild)
i=BiTreeDepth(T->lchild); // i为左子树的深度
else
i=0;
if(T->rchild)
j=BiTreeDepth(T->rchild); // j为右子树的深度
else
j=0;
return i>j?i+1:j+1; // T的深度为其左右子树的深度中的大者+1
}
TElemType Root(BiPTree T)
{ // 初始条件:二叉树T存在。操作结果:返回T的根
if(T)
return T->data;
else
return Nil;
}
TElemType Value(BiPTree p)
{ // 初始条件:二叉树T存在,p指向T中某个结点。操作结果:返回p所指结点的值
return p->data;
}
void Assign(BiPTree p,TElemType value)
{ // 给p所指结点赋值为value
p->data=value;
}
typedef BiPTree QElemType; // 设队列元素为二叉树的指针类型
#include"c3-2.h" // 链队列
#include"bo3-2.cpp" // 链队列的基本操作
BiPTree Point(BiPTree T,TElemType e)
{ // 返回二叉树T中指向元素值为e的结点的指针。加
LinkQueue q;
QElemType a;
if(T) // 非空树
{
InitQueue(q); // 初始化队列
EnQueue(q,T); // 根结点入队
while(!QueueEmpty(q)) // 队不空
{
DeQueue(q,a); // 出队,队列元素赋给a
if(a->data==e)
return a;
if(a->lchild) // 有左孩子
EnQueue(q,a->lchild); // 入队左孩子
if(a->rchild) // 有右孩子
EnQueue(q,a->rchild); // 入队右孩子
}
}
return NULL;
}
TElemType Parent(BiPTree T,TElemType e)
{ // 初始条件:二叉树T存在,e是T中某个结点
// 操作结果:若e是T的非根结点,则返回它的双亲,否则返回"空"
BiPTree a;
if(T) // 非空树
{
a=Point(T,e); // a是结点e的指针
if(a&&a!=T) // T中存在结点e且e是非根结点
return a->parent->data; // 返回e的双亲的值
}
return Nil; // 其余情况返回空
}
TElemType LeftChild(BiPTree T,TElemType e)
{ // 初始条件:二叉树T存在,e是T中某个结点。操作结果:返回e的左孩子。若e无左孩子,则返回"空"
BiPTree a;
if(T) // 非空树
{
a=Point(T,e); // a是结点e的指针
if(a&&a->lchild) // T中存在结点e且e存在左孩子
return a->lchild->data; // 返回e的左孩子的值
}
return Nil; // 其余情况返回空
}
TElemType RightChild(BiPTree T,TElemType e)
{ // 初始条件:二叉树T存在,e是T中某个结点。操作结果:返回e的右孩子。若e无右孩子,则返回"空"
BiPTree a;
if(T) // 非空树
{
a=Point(T,e); // a是结点e的指针
if(a&&a->rchild) // T中存在结点e且e存在右孩子
return a->rchild->data; // 返回e的右孩子的值
}
return Nil; // 其余情况返回空
}
TElemType LeftSibling(BiPTree T,TElemType e)
{ // 初始条件:二叉树T存在,e是T中某个结点
// 操作结果:返回e的左兄弟。若e是T的左孩子或无左兄弟,则返回"空"
BiPTree a;
if(T) // 非空树
{
a=Point(T,e); // a是结点e的指针
if(a&&a!=T&&a->parent->lchild&&a->parent->lchild!=a) // T中存在结点e且e存在左兄弟
return a->parent->lchild->data; // 返回e的左兄弟的值
}
return Nil; // 其余情况返回空
}
TElemType RightSibling(BiPTree T,TElemType e)
{ // 初始条件:二叉树T存在,e是T中某个结点
// 操作结果:返回e的右兄弟。若e是T的右孩子或无右兄弟,则返回"空"
BiPTree a;
if(T) // 非空树
{
a=Point(T,e); // a是结点e的指针
if(a&&a!=T&&a->parent->rchild&&a->parent->rchild!=a) // T中存在结点e且e存在右兄弟
return a->parent->rchild->data; // 返回e的右兄弟的值
}
return Nil; // 其余情况返回空
}
Status InsertChild(BiPTree p,int LR,BiPTree c) // 形参T无用
{ // 初始条件:二叉树T存在,p指向T中某个结点,LR为0或1,非空二叉树c与T不相交且右子树为空
// 操作结果:根据LR为0或1,插入c为T中p所指结点的左或右子树。p所指结点
// 的原有左或右子树则成为c的右子树
if(p) // p不空
{
if(LR==0)
{
c->rchild=p->lchild;
if(c->rchild) // c有右孩子(p原有左孩子)
c->rchild->parent=c;
p->lchild=c;
c->parent=p;
}
else // LR==1
{
c->rchild=p->rchild;
if(c->rchild) // c有右孩子(p原有右孩子)
c->rchild->parent=c;
p->rchild=c;
c->parent=p;
}
return OK;
}
return ERROR; // p空
}
Status DeleteChild(BiPTree p,int LR) // 形参T无用
{ // 初始条件:二叉树T存在,p指向T中某个结点,LR为0或1
// 操作结果:根据LR为0或1,删除T中p所指结点的左或右子树
if(p) // p不空
{
if(LR==0) // 删除左子树
ClearBiTree(p->lchild);
else // 删除右子树
ClearBiTree(p->rchild);
return OK;
}
return ERROR; // p空
}
void PreOrderTraverse(BiPTree T,void(*Visit)(BiPTree))
{ // 先序递归遍历二叉树T
if(T)
{
Visit(T); // 先访问根结点
PreOrderTraverse(T->lchild,Visit); // 再先序遍历左子树
PreOrderTraverse(T->rchild,Visit); // 最后先序遍历右子树
}
}
void InOrderTraverse(BiPTree T,void(*Visit)(BiPTree))
{ // 中序递归遍历二叉树T
if(T)
{
InOrderTraverse(T->lchild,Visit); // 中序遍历左子树
Visit(T); // 再访问根结点
InOrderTraverse(T->rchild,Visit); // 最后中序遍历右子树
}
}
void PostOrderTraverse(BiPTree T,void(*Visit)(BiPTree))
{ // 后序递归遍历二叉树T
if(T)
{
PostOrderTraverse(T->lchild,Visit); // 后序遍历左子树
PostOrderTraverse(T->rchild,Visit); // 后序遍历右子树
Visit(T); // 最后访问根结点
}
}
void LevelOrderTraverse(BiPTree T,void(*Visit)(BiPTree))
{ // 层序遍历二叉树T(利用队列)
LinkQueue q;
QElemType a;
if(T)
{
InitQueue(q);
EnQueue(q,T);
while(!QueueEmpty(q))
{
DeQueue(q,a);
Visit(a);
if(a->lchild!=NULL)
EnQueue(q,a->lchild);
if(a->rchild!=NULL)
EnQueue(q,a->rchild);
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -