⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k0.cpp

📁 强大的C++库
💻 CPP
字号:
/*! * \file  * \brief Implementation of modified Bessel functions of third kind * \author Tony Ottosson * * $Date: 2006-04-03 15:34:15 +0200 (Mon, 03 Apr 2006) $ * $Revision: 400 $ * * ------------------------------------------------------------------------- * * IT++ - C++ library of mathematical, signal processing, speech processing, *        and communications classes and functions * * Copyright (C) 1995-2005  (see AUTHORS file for a list of contributors) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * ------------------------------------------------------------------------- * * This is slightly modified routine from the Cephes library: * http://www.netlib.org/cephes/  */#include <itpp/base/bessel/bessel_internal.h>#include <itpp/base/itassert.h>#include <cmath>using namespace itpp;/* * Modified Bessel function, third kind, order zero * * doule x, y, k0(); * * y = k0( x ); * * DESCRIPTION: * * Returns modified Bessel function of the third kind * of order zero of the argument. * * The range is partitioned into the two intervals [0,8] and * (8, infinity).  Chebyshev polynomial expansions are employed * in each interval. * * ACCURACY: * * Tested at 2000 random points between 0 and 8.  Peak absolute * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15. *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0, 30       30000       1.2e-15     1.6e-16 * * ERROR MESSAGES: * *   message         condition      value returned *  K0 domain          x <= 0          MAXNUM *//* * Modified Bessel function, third kind, order zero, exponentially scaled * * double x, y, k0e(); * * y = k0e( x ); * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of the third kind of order zero of the argument. * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0, 30       30000       1.4e-15     1.4e-16 * See k0(). *//*  Cephes Math Library Release 2.8:  June, 2000  Copyright 1984, 1987, 2000 by Stephen L. Moshier*//* Chebyshev coefficients for K0(x) + log(x/2) I0(x) * in the interval [0,2].  The odd order coefficients are all * zero; only the even order coefficients are listed. *  * lim(x->0){ K0(x) + log(x/2) I0(x) } = -EUL. */static double A[] ={ 1.37446543561352307156E-16, 4.25981614279661018399E-14, 1.03496952576338420167E-11, 1.90451637722020886025E-9, 2.53479107902614945675E-7, 2.28621210311945178607E-5, 1.26461541144692592338E-3, 3.59799365153615016266E-2, 3.44289899924628486886E-1,-5.35327393233902768720E-1};/* Chebyshev coefficients for exp(x) sqrt(x) K0(x) * in the inverted interval [2,infinity]. *  * lim(x->inf){ exp(x) sqrt(x) K0(x) } = sqrt(pi/2). */static double B[] = { 5.30043377268626276149E-18,-1.64758043015242134646E-17, 5.21039150503902756861E-17,-1.67823109680541210385E-16, 5.51205597852431940784E-16,-1.84859337734377901440E-15, 6.34007647740507060557E-15,-2.22751332699166985548E-14, 8.03289077536357521100E-14,-2.98009692317273043925E-13, 1.14034058820847496303E-12,-4.51459788337394416547E-12, 1.85594911495471785253E-11,-7.95748924447710747776E-11, 3.57739728140030116597E-10,-1.69753450938905987466E-9, 8.57403401741422608519E-9,-4.66048989768794782956E-8, 2.76681363944501510342E-7,-1.83175552271911948767E-6, 1.39498137188764993662E-5,-1.28495495816278026384E-4, 1.56988388573005337491E-3,-3.14481013119645005427E-2, 2.44030308206595545468E0};#define MAXNUM 1.79769313486231570815E308    /* 2**1024*(1-MACHEP) */double k0(double x){  double y, z;  if( x <= 0.0 )    {      it_warning("besselk:: argument domain error");      //mtherr( "k0", DOMAIN );      return( MAXNUM );    }  if( x <= 2.0 )    {      y = x * x - 2.0;      y = chbevl( y, A, 10 ) - log( 0.5 * x ) * i0(x);      return( y );    }  z = 8.0/x - 2.0;  y = exp(-x) * chbevl( z, B, 25 ) / sqrt(x);  return(y);}double k0e(double x){  double y;  if( x <= 0.0 )    {      it_warning("besselk:: argument domain error");      //mtherr( "k0e", DOMAIN );      return( MAXNUM );    }  if( x <= 2.0 )    {      y = x * x - 2.0;      y = chbevl( y, A, 10 ) - log( 0.5 * x ) * i0(x);      return( y * exp(x) );    }  y = chbevl( 8.0/x - 2.0, B, 25 ) / sqrt(x);  return(y);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -