📄 airy.cpp
字号:
/*! * \file * \brief Implementation of Airy function * \author Tony Ottosson * * $Date: 2006-04-03 15:34:15 +0200 (Mon, 03 Apr 2006) $ * $Revision: 400 $ * * ------------------------------------------------------------------------- * * IT++ - C++ library of mathematical, signal processing, speech processing, * and communications classes and functions * * Copyright (C) 1995-2005 (see AUTHORS file for a list of contributors) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * ------------------------------------------------------------------------- * * This is slightly modified routine from the Cephes library: * http://www.netlib.org/cephes/ */#include <itpp/base/bessel/bessel_internal.h>#include <cmath>/* * Airy function * * double x, ai, aip, bi, bip; * int airy(); * * airy( x, _&ai, _&aip, _&bi, _&bip ); * * DESCRIPTION: * * Solution of the differential equation * * y"(x) = xy. * * The function returns the two independent solutions Ai, Bi * and their first derivatives Ai'(x), Bi'(x). * * Evaluation is by power series summation for small x, * by rational minimax approximations for large x. * * ACCURACY: * Error criterion is absolute when function <= 1, relative * when function > 1, except * denotes relative error criterion. * For large negative x, the absolute error increases as x^1.5. * For large positive x, the relative error increases as x^1.5. * * Arithmetic domain function # trials peak rms * IEEE -10, 0 Ai 10000 1.6e-15 2.7e-16 * IEEE 0, 10 Ai 10000 2.3e-14* 1.8e-15* * IEEE -10, 0 Ai' 10000 4.6e-15 7.6e-16 * IEEE 0, 10 Ai' 10000 1.8e-14* 1.5e-15* * IEEE -10, 10 Bi 30000 4.2e-15 5.3e-16 * IEEE -10, 10 Bi' 30000 4.9e-15 7.3e-16 *//* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier*/static double c1 = 0.35502805388781723926;static double c2 = 0.258819403792806798405;static double sqrt3 = 1.732050807568877293527;static double sqpii = 5.64189583547756286948E-1;#define MAXAIRY 25.77#define PI 3.14159265358979323846 /* pi */#define MAXNUM 1.79769313486231570815E308 /* 2**1024*(1-MACHEP) */#define MACHEP 1.11022302462515654042E-16 /* 2**-53 */static double AN[8] = { 3.46538101525629032477E-1, 1.20075952739645805542E1, 7.62796053615234516538E1, 1.68089224934630576269E2, 1.59756391350164413639E2, 7.05360906840444183113E1, 1.40264691163389668864E1, 9.99999999999999995305E-1,};static double AD[8] = { 5.67594532638770212846E-1, 1.47562562584847203173E1, 8.45138970141474626562E1, 1.77318088145400459522E2, 1.64234692871529701831E2, 7.14778400825575695274E1, 1.40959135607834029598E1, 1.00000000000000000470E0,};static double APN[8] = { 6.13759184814035759225E-1, 1.47454670787755323881E1, 8.20584123476060982430E1, 1.71184781360976385540E2, 1.59317847137141783523E2, 6.99778599330103016170E1, 1.39470856980481566958E1, 1.00000000000000000550E0,};static double APD[8] = { 3.34203677749736953049E-1, 1.11810297306158156705E1, 7.11727352147859965283E1, 1.58778084372838313640E2, 1.53206427475809220834E2, 6.86752304592780337944E1, 1.38498634758259442477E1, 9.99999999999999994502E-1,};static double BN16[5] = {-2.53240795869364152689E-1, 5.75285167332467384228E-1,-3.29907036873225371650E-1, 6.44404068948199951727E-2,-3.82519546641336734394E-3,};static double BD16[5] = {/* 1.00000000000000000000E0,*/-7.15685095054035237902E0, 1.06039580715664694291E1,-5.23246636471251500874E0, 9.57395864378383833152E-1,-5.50828147163549611107E-2,};static double BPPN[5] = { 4.65461162774651610328E-1,-1.08992173800493920734E0, 6.38800117371827987759E-1,-1.26844349553102907034E-1, 7.62487844342109852105E-3,};static double BPPD[5] = {/* 1.00000000000000000000E0,*/-8.70622787633159124240E0, 1.38993162704553213172E1,-7.14116144616431159572E0, 1.34008595960680518666E0,-7.84273211323341930448E-2,};static double AFN[9] = {-1.31696323418331795333E-1,-6.26456544431912369773E-1,-6.93158036036933542233E-1,-2.79779981545119124951E-1,-4.91900132609500318020E-2,-4.06265923594885404393E-3,-1.59276496239262096340E-4,-2.77649108155232920844E-6,-1.67787698489114633780E-8,};static double AFD[9] = {/* 1.00000000000000000000E0,*/ 1.33560420706553243746E1, 3.26825032795224613948E1, 2.67367040941499554804E1, 9.18707402907259625840E0, 1.47529146771666414581E0, 1.15687173795188044134E-1, 4.40291641615211203805E-3, 7.54720348287414296618E-5, 4.51850092970580378464E-7,};static double AGN[11] = { 1.97339932091685679179E-2, 3.91103029615688277255E-1, 1.06579897599595591108E0, 9.39169229816650230044E-1, 3.51465656105547619242E-1, 6.33888919628925490927E-2, 5.85804113048388458567E-3, 2.82851600836737019778E-4, 6.98793669997260967291E-6, 8.11789239554389293311E-8, 3.41551784765923618484E-10,};static double AGD[10] = {/* 1.00000000000000000000E0,*/ 9.30892908077441974853E0, 1.98352928718312140417E1, 1.55646628932864612953E1, 5.47686069422975497931E0, 9.54293611618961883998E-1, 8.64580826352392193095E-2, 4.12656523824222607191E-3, 1.01259085116509135510E-4, 1.17166733214413521882E-6, 4.91834570062930015649E-9,};static double APFN[9] = { 1.85365624022535566142E-1, 8.86712188052584095637E-1, 9.87391981747398547272E-1, 4.01241082318003734092E-1, 7.10304926289631174579E-2, 5.90618657995661810071E-3, 2.33051409401776799569E-4, 4.08718778289035454598E-6, 2.48379932900442457853E-8,};static double APFD[9] = {/* 1.00000000000000000000E0,*/ 1.47345854687502542552E1, 3.75423933435489594466E1, 3.14657751203046424330E1, 1.09969125207298778536E1, 1.78885054766999417817E0, 1.41733275753662636873E-1, 5.44066067017226003627E-3, 9.39421290654511171663E-5, 5.65978713036027009243E-7,};static double APGN[11] = {-3.55615429033082288335E-2,-6.37311518129435504426E-1,-1.70856738884312371053E0,-1.50221872117316635393E0,-5.63606665822102676611E-1,-1.02101031120216891789E-1,-9.48396695961445269093E-3,-4.60325307486780994357E-4,-1.14300836484517375919E-5,-1.33415518685547420648E-7,-5.63803833958893494476E-10,};static double APGD[11] = {/* 1.00000000000000000000E0,*/ 9.85865801696130355144E0, 2.16401867356585941885E1, 1.73130776389749389525E1, 6.17872175280828766327E0, 1.08848694396321495475E0, 9.95005543440888479402E-2, 4.78468199683886610842E-3, 1.18159633322838625562E-4, 1.37480673554219441465E-6, 5.79912514929147598821E-9,};int airy(double x, double *ai, double *aip, double *bi, double *bip){ double z, zz, t, f, g, uf, ug, k, zeta, theta; int domflg; domflg = 0; if( x > MAXAIRY ) { *ai = 0; *aip = 0; *bi = MAXNUM; *bip = MAXNUM; return(-1); } if( x < -2.09 ) { domflg = 15; t = sqrt(-x); zeta = -2.0 * x * t / 3.0; t = sqrt(t); k = sqpii / t; z = 1.0/zeta; zz = z * z; uf = 1.0 + zz * polevl( zz, AFN, 8 ) / p1evl( zz, AFD, 9 ); ug = z * polevl( zz, AGN, 10 ) / p1evl( zz, AGD, 10 ); theta = zeta + 0.25 * PI; f = sin( theta ); g = cos( theta ); *ai = k * (f * uf - g * ug); *bi = k * (g * uf + f * ug); uf = 1.0 + zz * polevl( zz, APFN, 8 ) / p1evl( zz, APFD, 9 ); ug = z * polevl( zz, APGN, 10 ) / p1evl( zz, APGD, 10 ); k = sqpii * t; *aip = -k * (g * uf + f * ug); *bip = k * (f * uf - g * ug); return(0); } if( x >= 2.09 ) /* cbrt(9) */ { domflg = 5; t = sqrt(x); zeta = 2.0 * x * t / 3.0; g = exp( zeta ); t = sqrt(t); k = 2.0 * t * g; z = 1.0/zeta; f = polevl( z, AN, 7 ) / polevl( z, AD, 7 ); *ai = sqpii * f / k; k = -0.5 * sqpii * t / g; f = polevl( z, APN, 7 ) / polevl( z, APD, 7 ); *aip = f * k; if( x > 8.3203353 ) /* zeta > 16 */ { f = z * polevl( z, BN16, 4 ) / p1evl( z, BD16, 5 ); k = sqpii * g; *bi = k * (1.0 + f) / t; f = z * polevl( z, BPPN, 4 ) / p1evl( z, BPPD, 5 ); *bip = k * t * (1.0 + f); return(0); } } f = 1.0; g = x; t = 1.0; uf = 1.0; ug = x; k = 1.0; z = x * x * x; while( t > MACHEP ) { uf *= z; k += 1.0; uf /=k; ug *= z; k += 1.0; ug /=k; uf /=k; f += uf; k += 1.0; ug /=k; g += ug; t = fabs(uf/f); } uf = c1 * f; ug = c2 * g; if( (domflg & 1) == 0 ) *ai = uf - ug; if( (domflg & 2) == 0 ) *bi = sqrt3 * (uf + ug); /* the deriviative of ai */ k = 4.0; uf = x * x/2.0; ug = z/3.0; f = uf; g = 1.0 + ug; uf /= 3.0; t = 1.0; while( t > MACHEP ) { uf *= z; ug /=k; k += 1.0; ug *= z; uf /=k; f += uf; k += 1.0; ug /=k; uf /=k; g += ug; k += 1.0; t = fabs(ug/g); } uf = c1 * f; ug = c2 * g; if( (domflg & 4) == 0 ) *aip = uf - ug; if( (domflg & 8) == 0 ) *bip = sqrt3 * (uf + ug); return(0);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -