📄 i0.cpp
字号:
/*! * \file * \brief Implementation of modified Bessel functions of order zero * \author Tony Ottosson * * $Date: 2006-04-03 15:34:15 +0200 (Mon, 03 Apr 2006) $ * $Revision: 400 $ * * ------------------------------------------------------------------------- * * IT++ - C++ library of mathematical, signal processing, speech processing, * and communications classes and functions * * Copyright (C) 1995-2005 (see AUTHORS file for a list of contributors) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * ------------------------------------------------------------------------- * * This is slightly modified routine from the Cephes library: * http://www.netlib.org/cephes/ */#include <itpp/base/bessel/bessel_internal.h>#include <cmath>/* * * Modified Bessel function of order zero * * double x, y, i0(); * * y = i0( x ); * * * DESCRIPTION: * * Returns modified Bessel function of order zero of the * argument. * * The function is defined as i0(x) = j0( ix ). * * The range is partitioned into the two intervals [0,8] and * (8, infinity). Chebyshev polynomial expansions are employed * in each interval. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,30 30000 5.8e-16 1.4e-16 * *//* * Modified Bessel function of order zero, * exponentially scaled * * double x, y, i0e(); * * y = i0e( x ); * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of order zero of the argument. * * The function is defined as i0e(x) = exp(-|x|) j0( ix ). * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,30 30000 5.4e-16 1.2e-16 * See i0(). *//* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier*//* Chebyshev coefficients for exp(-x) I0(x) * in the interval [0,8]. * * lim(x->0){ exp(-x) I0(x) } = 1. */static double A[] ={-4.41534164647933937950E-18, 3.33079451882223809783E-17,-2.43127984654795469359E-16, 1.71539128555513303061E-15,-1.16853328779934516808E-14, 7.67618549860493561688E-14,-4.85644678311192946090E-13, 2.95505266312963983461E-12,-1.72682629144155570723E-11, 9.67580903537323691224E-11,-5.18979560163526290666E-10, 2.65982372468238665035E-9,-1.30002500998624804212E-8, 6.04699502254191894932E-8,-2.67079385394061173391E-7, 1.11738753912010371815E-6,-4.41673835845875056359E-6, 1.64484480707288970893E-5,-5.75419501008210370398E-5, 1.88502885095841655729E-4,-5.76375574538582365885E-4, 1.63947561694133579842E-3,-4.32430999505057594430E-3, 1.05464603945949983183E-2,-2.37374148058994688156E-2, 4.93052842396707084878E-2,-9.49010970480476444210E-2, 1.71620901522208775349E-1,-3.04682672343198398683E-1, 6.76795274409476084995E-1};/* Chebyshev coefficients for exp(-x) sqrt(x) I0(x) * in the inverted interval [8,infinity]. * * lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi). */static double B[] ={-7.23318048787475395456E-18,-4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17,-2.82762398051658348494E-16,-3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15,-9.55484669882830764870E-15,-4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13,-1.79417853150680611778E-12,-1.32158118404477131188E-11,-3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1};double i0(double x){ double y; if( x < 0 ) x = -x; if( x <= 8.0 ) { y = (x/2.0) - 2.0; return( exp(x) * chbevl( y, A, 30 ) ); } return( exp(x) * chbevl( 32.0/x - 2.0, B, 25 ) / sqrt(x) );}double i0e(double x){ double y; if( x < 0 ) x = -x; if( x <= 8.0 ) { y = (x/2.0) - 2.0; return( chbevl( y, A, 30 ) ); } return( chbevl( 32.0/x - 2.0, B, 25 ) / sqrt(x) );}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -