📄 iv.cpp
字号:
/*! * \file * \brief Implementation of modified Bessel functions of noninteager order * \author Tony Ottosson * * $Date: 2006-04-03 15:34:15 +0200 (Mon, 03 Apr 2006) $ * $Revision: 400 $ * * ------------------------------------------------------------------------- * * IT++ - C++ library of mathematical, signal processing, speech processing, * and communications classes and functions * * Copyright (C) 1995-2005 (see AUTHORS file for a list of contributors) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * ------------------------------------------------------------------------- * * This is slightly modified routine from the Cephes library: * http://www.netlib.org/cephes/ */#include <itpp/base/bessel/bessel_internal.h>#include <itpp/base/scalfunc.h>#include <cmath>using namespace itpp;/* * Modified Bessel function of noninteger order * * double v, x, y, iv(); * * y = iv( v, x ); * * DESCRIPTION: * * Returns modified Bessel function of order v of the * argument. If x is negative, v must be integer valued. * * The function is defined as Iv(x) = Jv( ix ). It is * here computed in terms of the confluent hypergeometric * function, according to the formula * * v -x * Iv(x) = (x/2) e hyperg( v+0.5, 2v+1, 2x ) / gamma(v+1) * * If v is a negative integer, then v is replaced by -v. * * * ACCURACY: * * Tested at random points (v, x), with v between 0 and * 30, x between 0 and 28. * Relative error: * arithmetic domain # trials peak rms * IEEE 0,30 10000 1.7e-14 2.7e-15 * * Accuracy is diminished if v is near a negative integer. * * See also hyperg.c. *//* Mdified Bessel function of noninteger order *//* If x < 0, then v must be an integer. *//* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier*/#define MAXNUM 1.79769313486231570815E308 /* 2**1024*(1-MACHEP) */double iv(double v, double x){ int sign; double t, ax; /* If v is a negative integer, invoke symmetry */ t = floor(v); if( v < 0.0 ) { if( t == v ) { v = -v; /* symmetry */ t = -t; } } /* If x is negative, require v to be an integer */ sign = 1; if( x < 0.0 ) { if( t != v ) { it_warning("besseli:: argument domain error"); //mtherr( "iv", DOMAIN ); return( 0.0 ); } if( v != 2.0 * floor(v/2.0) ) sign = -1; } /* Avoid logarithm singularity */ if( x == 0.0 ) { if( v == 0.0 ) return( 1.0 ); if( v < 0.0 ) { it_warning("besseli:: overflow"); //mtherr( "iv", OVERFLOW ); return( MAXNUM ); } else return( 0.0 ); } ax = fabs(x); t = v * log( 0.5 * ax ) - x; t = sign * exp(t) / itpp::gamma( v + 1.0 ); ax = v + 0.5; return( t * hyperg( ax, 2.0 * ax, 2.0 * x ) );}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -