📄 mathalib.html
字号:
</blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double fmod ( double x, /* numerator */ double y /* denominator */ )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p><p>The double-precision modulus of <i>x</i>/<i>y</i> with the sign of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition</i><hr><a name="infinity"></a><p align=right><a href="rtnIndex.htm"><i>OS Libraries : Routines</i></a></p></blockquote><h1>infinity( )</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote> <p><strong>infinity( )</strong> - return a very large double</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double infinity (void)</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p><p>This routine returns a very large double.<p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision representation of positive infinity.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b><hr><a name="irint"></a><p align=right><a href="rtnIndex.htm"><i>OS Libraries : Routines</i></a></p></blockquote><h1>irint( )</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote> <p><strong>irint( )</strong> - convert a double-precision value to an integer</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>int irint ( double x /* argument */ )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p><p>This routine converts a double-precision value <i>x</i> to an integerusing the selected IEEE rounding direction.<p></blockquote><h4>CAVEAT</h4><blockquote><p><p>The rounding direction is not pre-selectable and is fixed forround-to-the-nearest.<p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The integer representation of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b><hr><a name="iround"></a><p align=right><a href="rtnIndex.htm"><i>OS Libraries : Routines</i></a></p></blockquote><h1>iround( )</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote> <p><strong>iround( )</strong> - round a number to the nearest integer</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>int iround ( double x /* argument */ )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p><p>This routine rounds a double-precision value <i>x</i> to the nearestinteger value.<p></blockquote><h4>NOTE</h4><blockquote><p><p>If <i>x</i> is spaced evenly between two integers, it returns the even integer.<p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The integer nearest to <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b><hr><a name="log"></a><p align=right><a href="rtnIndex.htm"><i>OS Libraries : Routines</i></a></p></blockquote><h1>log( )</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote> <p><strong>log( )</strong> - compute a natural logarithm (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double log ( double x /* value to compute the natural logarithm of */ )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision natural logarithm of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition</i><hr><a name="log10"></a><p align=right><a href="rtnIndex.htm"><i>OS Libraries : Routines</i></a></p></blockquote><h1>log10( )</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote> <p><strong>log10( )</strong> - compute a base-10 logarithm (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double log10 ( double x /* value to compute the base-10 logarithm of */ )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision base-10 logarithm of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition</i><hr><a name="log2"></a><p align=right><a href="rtnIndex.htm"><i>OS Libraries : Routines</i></a></p></blockquote><h1>log2( )</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote> <p><strong>log2( )</strong> - compute a base-2 logarithm</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double log2 ( double x /* value to compute the base-two logarithm of */ )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p><p>This routine returns the base-2 logarithm of <i>x</i> in double precision.<p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision base-2 logarithm of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b><hr><a name="pow"></a><p align=right><a href="rtnIndex.htm"><i>OS Libraries : Routines</i></a></p></blockquote><h1>pow( )</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote> <p><strong>pow( )</strong> - compute the value of a number raised to a specified power (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double pow ( double x, /* operand */ double y /* exponent */ )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision value of <i>x</i> to the power of <i>y</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition</i><hr><a name="round"></a><p align=right><a href="rtnIndex.htm"><i>OS Libraries : Routines</i></a></p></blockquote><h1>round( )</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote> <p><strong>round( )</strong> - round a number to the nearest integer</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double round ( double x /* value to round */ )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p><p>This routine rounds a double-precision value <i>x</i> to the nearestintegral value.<p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision representation of <i>x</i> rounded to thenearest integral value.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b><hr><a name="sin"></a><p align=right><a href="rtnIndex.htm"><i>OS Libraries : Routines</i></a></p></blockquote><h1>sin( )</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote> <p><strong>sin( )</strong> - compute a sine (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double sin ( double x /* angle in radians */ )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision floating-point sine of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition</i><hr><a name="sincos"></a><p align=right><a href="rtnIndex.htm"><i>OS Libraries : Routines</i></a></p></blockquote><h1>sincos( )</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote> <p><strong>sincos( )</strong> - compute both a sine and cosine</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>void sincos ( double x, /* angle in radians */ double *sinResult, /* sine result buffer */ double *cosResult /* cosine result buffer */ )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p><p>This routine computes both the sine and cosine of <i>x</i> in double precision.The sine is copied to <i>sinResult</i> and the cosine is copied to <i>cosResult</i>.<p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>N/A<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b><hr><a name="sinh"></a><p align=right><a href="rtnIndex.htm"><i>OS Libraries : Routines</i></a></p></blockquote><h1>sinh( )</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote> <p><strong>sinh( )</strong> - compute a hyperbolic sine (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double sinh ( double x /* angle in radians */ )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision hyperbolic sine of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition</i><hr><a name="sqrt"></a><p align=right><a href="rtnIndex.htm"><i>OS Libraries : Routines</i></a></p></blockquote><h1>sqrt( )</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote> <p><strong>sqrt( )</strong> - compute a non-negative square root (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double sqrt ( double x /* value to compute the square root of */ )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p>INCLUDE FILES: <b>math.h</b> <p><p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision square root of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition</i><hr><a name="tan"></a><p align=right><a href="rtnIndex.htm"><i>OS Libraries : Routines</i></a></p></blockquote><h1>tan( )</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote> <p><strong>tan( )</strong> - compute a tangent (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double tan ( double x /* angle in radians */ )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision tangent of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition</i><hr><a name="tanh"></a><p align=right><a href="rtnIndex.htm"><i>OS Libraries : Routines</i></a></p></blockquote><h1>tanh( )</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote> <p><strong>tanh( )</strong> - compute a hyperbolic tangent (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double tanh ( double x /* angle in radians */ )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision hyperbolic tangent of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition</i>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -