📄 ide-dma.c
字号:
/* * linux/drivers/ide/ide-dma.c Version 4.10 June 9, 2000 * * Copyright (c) 1999-2000 Andre Hedrick <andre@linux-ide.org> * May be copied or modified under the terms of the GNU General Public License *//* * Special Thanks to Mark for his Six years of work. * * Copyright (c) 1995-1998 Mark Lord * May be copied or modified under the terms of the GNU General Public License *//* * This module provides support for the bus-master IDE DMA functions * of various PCI chipsets, including the Intel PIIX (i82371FB for * the 430 FX chipset), the PIIX3 (i82371SB for the 430 HX/VX and * 440 chipsets), and the PIIX4 (i82371AB for the 430 TX chipset) * ("PIIX" stands for "PCI ISA IDE Xcellerator"). * * Pretty much the same code works for other IDE PCI bus-mastering chipsets. * * DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies). * * By default, DMA support is prepared for use, but is currently enabled only * for drives which already have DMA enabled (UltraDMA or mode 2 multi/single), * or which are recognized as "good" (see table below). Drives with only mode0 * or mode1 (multi/single) DMA should also work with this chipset/driver * (eg. MC2112A) but are not enabled by default. * * Use "hdparm -i" to view modes supported by a given drive. * * The hdparm-3.5 (or later) utility can be used for manually enabling/disabling * DMA support, but must be (re-)compiled against this kernel version or later. * * To enable DMA, use "hdparm -d1 /dev/hd?" on a per-drive basis after booting. * If problems arise, ide.c will disable DMA operation after a few retries. * This error recovery mechanism works and has been extremely well exercised. * * IDE drives, depending on their vintage, may support several different modes * of DMA operation. The boot-time modes are indicated with a "*" in * the "hdparm -i" listing, and can be changed with *knowledgeable* use of * the "hdparm -X" feature. There is seldom a need to do this, as drives * normally power-up with their "best" PIO/DMA modes enabled. * * Testing has been done with a rather extensive number of drives, * with Quantum & Western Digital models generally outperforming the pack, * and Fujitsu & Conner (and some Seagate which are really Conner) drives * showing more lackluster throughput. * * Keep an eye on /var/adm/messages for "DMA disabled" messages. * * Some people have reported trouble with Intel Zappa motherboards. * This can be fixed by upgrading the AMI BIOS to version 1.00.04.BS0, * available from ftp://ftp.intel.com/pub/bios/10004bs0.exe * (thanks to Glen Morrell <glen@spin.Stanford.edu> for researching this). * * Thanks to "Christopher J. Reimer" <reimer@doe.carleton.ca> for * fixing the problem with the BIOS on some Acer motherboards. * * Thanks to "Benoit Poulot-Cazajous" <poulot@chorus.fr> for testing * "TX" chipset compatibility and for providing patches for the "TX" chipset. * * Thanks to Christian Brunner <chb@muc.de> for taking a good first crack * at generic DMA -- his patches were referred to when preparing this code. * * Most importantly, thanks to Robert Bringman <rob@mars.trion.com> * for supplying a Promise UDMA board & WD UDMA drive for this work! * * And, yes, Intel Zappa boards really *do* use both PIIX IDE ports. * * check_drive_lists(ide_drive_t *drive, int good_bad) * * ATA-66/100 and recovery functions, I forgot the rest...... * SELECT_READ_WRITE(hwif,drive,func) for active tuning based on IO direction. * */#include <linux/config.h>#include <linux/types.h>#include <linux/kernel.h>#include <linux/timer.h>#include <linux/mm.h>#include <linux/interrupt.h>#include <linux/pci.h>#include <linux/init.h>#include <linux/ide.h>#include <asm/io.h>#include <asm/irq.h>/* * Long lost data from 2.0.34 that is now in 2.0.39 * * This was used in ./drivers/block/triton.c to do DMA Base address setup * when PnP failed. Oh the things we forget. I believe this was part * of SFF-8038i that has been withdrawn from public access... :-(( */#define DEFAULT_BMIBA 0xe800 /* in case BIOS did not init it */#define DEFAULT_BMCRBA 0xcc00 /* VIA's default value */#define DEFAULT_BMALIBA 0xd400 /* ALI's default value */extern char *ide_dmafunc_verbose(ide_dma_action_t dmafunc);#ifdef CONFIG_IDEDMA_NEW_DRIVE_LISTINGSstruct drive_list_entry { char * id_model; char * id_firmware;};struct drive_list_entry drive_whitelist [] = { { "Micropolis 2112A" , "ALL" }, { "CONNER CTMA 4000" , "ALL" }, { "CONNER CTT8000-A" , "ALL" }, { "ST34342A" , "ALL" }, { 0 , 0 }};struct drive_list_entry drive_blacklist [] = { { "WDC AC11000H" , "ALL" }, { "WDC AC22100H" , "ALL" }, { "WDC AC32500H" , "ALL" }, { "WDC AC33100H" , "ALL" }, { "WDC AC31600H" , "ALL" }, { "WDC AC32100H" , "24.09P07" }, { "WDC AC23200L" , "21.10N21" }, { "Compaq CRD-8241B" , "ALL" }, { "CRD-8400B" , "ALL" }, { "CRD-8480B", "ALL" }, { "CRD-8480C", "ALL" }, { "CRD-8482B", "ALL" }, { "CRD-84" , "ALL" }, { "SanDisk SDP3B" , "ALL" }, { "SanDisk SDP3B-64" , "ALL" }, { "SANYO CD-ROM CRD" , "ALL" }, { "HITACHI CDR-8" , "ALL" }, { "HITACHI CDR-8335" , "ALL" }, { "HITACHI CDR-8435" , "ALL" }, { "Toshiba CD-ROM XM-6202B" , "ALL" }, { "CD-532E-A" , "ALL" }, { "E-IDE CD-ROM CR-840", "ALL" }, { "CD-ROM Drive/F5A", "ALL" }, { "RICOH CD-R/RW MP7083A", "ALL" }, { "WPI CDD-820", "ALL" }, { "SAMSUNG CD-ROM SC-148C", "ALL" }, { "SAMSUNG CD-ROM SC-148F", "ALL" }, { "SAMSUNG CD-ROM SC", "ALL" }, { "SanDisk SDP3B-64" , "ALL" }, { "SAMSUNG CD-ROM SN-124", "ALL" }, { "PLEXTOR CD-R PX-W8432T", "ALL" }, { "ATAPI CD-ROM DRIVE 40X MAXIMUM", "ALL" }, { "_NEC DV5800A", "ALL" }, { 0 , 0 }};int in_drive_list(struct hd_driveid *id, struct drive_list_entry * drive_table){ for ( ; drive_table->id_model ; drive_table++) if ((!strcmp(drive_table->id_model, id->model)) && ((!strstr(drive_table->id_firmware, id->fw_rev)) || (!strcmp(drive_table->id_firmware, "ALL")))) return 1; return 0;}#else /* !CONFIG_IDEDMA_NEW_DRIVE_LISTINGS *//* * good_dma_drives() lists the model names (from "hdparm -i") * of drives which do not support mode2 DMA but which are * known to work fine with this interface under Linux. */const char *good_dma_drives[] = {"Micropolis 2112A", "CONNER CTMA 4000", "CONNER CTT8000-A", "ST34342A", /* for Sun Ultra */ NULL};/* * bad_dma_drives() lists the model names (from "hdparm -i") * of drives which supposedly support (U)DMA but which are * known to corrupt data with this interface under Linux. * * This is an empirical list. Its generated from bug reports. That means * while it reflects actual problem distributions it doesn't answer whether * the drive or the controller, or cabling, or software, or some combination * thereof is the fault. If you don't happen to agree with the kernel's * opinion of your drive - use hdparm to turn DMA on. */const char *bad_dma_drives[] = {"WDC AC11000H", "WDC AC22100H", "WDC AC32100H", "WDC AC32500H", "WDC AC33100H", "WDC AC31600H", NULL};#endif /* CONFIG_IDEDMA_NEW_DRIVE_LISTINGS *//* * Our Physical Region Descriptor (PRD) table should be large enough * to handle the biggest I/O request we are likely to see. Since requests * can have no more than 256 sectors, and since the typical blocksize is * two or more sectors, we could get by with a limit of 128 entries here for * the usual worst case. Most requests seem to include some contiguous blocks, * further reducing the number of table entries required. * * The driver reverts to PIO mode for individual requests that exceed * this limit (possible with 512 byte blocksizes, eg. MSDOS f/s), so handling * 100% of all crazy scenarios here is not necessary. * * As it turns out though, we must allocate a full 4KB page for this, * so the two PRD tables (ide0 & ide1) will each get half of that, * allowing each to have about 256 entries (8 bytes each) from this. */#define PRD_BYTES 8#define PRD_ENTRIES (PAGE_SIZE / (2 * PRD_BYTES))/* * dma_intr() is the handler for disk read/write DMA interrupts */ide_startstop_t ide_dma_intr (ide_drive_t *drive){ int i; byte stat, dma_stat; dma_stat = HWIF(drive)->dmaproc(ide_dma_end, drive); stat = GET_STAT(); /* get drive status */ if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) { if (!dma_stat) { struct request *rq = HWGROUP(drive)->rq; rq = HWGROUP(drive)->rq; for (i = rq->nr_sectors; i > 0;) { i -= rq->current_nr_sectors; ide_end_request(1, HWGROUP(drive)); } return ide_stopped; } printk("%s: dma_intr: bad DMA status (dma_stat=%x)\n", drive->name, dma_stat); } return ide_error(drive, "dma_intr", stat);}static int ide_build_sglist (ide_hwif_t *hwif, struct request *rq){ struct buffer_head *bh; struct scatterlist *sg = hwif->sg_table; int nents = 0; if (hwif->sg_dma_active) BUG(); if (rq->cmd == READ) hwif->sg_dma_direction = PCI_DMA_FROMDEVICE; else hwif->sg_dma_direction = PCI_DMA_TODEVICE; bh = rq->bh; do { unsigned char *virt_addr = bh->b_data; unsigned int size = bh->b_size; if (nents >= PRD_ENTRIES) return 0; while ((bh = bh->b_reqnext) != NULL) { if ((virt_addr + size) != (unsigned char *) bh->b_data) break; size += bh->b_size; } memset(&sg[nents], 0, sizeof(*sg)); sg[nents].address = virt_addr; sg[nents].length = size; nents++; } while (bh != NULL); return pci_map_sg(hwif->pci_dev, sg, nents, hwif->sg_dma_direction);}/* * ide_build_dmatable() prepares a dma request. * Returns 0 if all went okay, returns 1 otherwise. * May also be invoked from trm290.c */int ide_build_dmatable (ide_drive_t *drive, ide_dma_action_t func){ unsigned int *table = HWIF(drive)->dmatable_cpu;#ifdef CONFIG_BLK_DEV_TRM290 unsigned int is_trm290_chipset = (HWIF(drive)->chipset == ide_trm290);#else const int is_trm290_chipset = 0;#endif unsigned int count = 0; int i; struct scatterlist *sg; HWIF(drive)->sg_nents = i = ide_build_sglist(HWIF(drive), HWGROUP(drive)->rq); if (!i) return 0; sg = HWIF(drive)->sg_table; while (i && sg_dma_len(sg)) { u32 cur_addr; u32 cur_len; cur_addr = sg_dma_address(sg); cur_len = sg_dma_len(sg); /* * Fill in the dma table, without crossing any 64kB boundaries. * Most hardware requires 16-bit alignment of all blocks, * but the trm290 requires 32-bit alignment. */ while (cur_len) { if (count++ >= PRD_ENTRIES) { printk("%s: DMA table too small\n", drive->name); goto use_pio_instead; } else { u32 xcount, bcount = 0x10000 - (cur_addr & 0xffff); if (bcount > cur_len) bcount = cur_len; *table++ = cpu_to_le32(cur_addr); xcount = bcount & 0xffff; if (is_trm290_chipset) xcount = ((xcount >> 2) - 1) << 16; if (xcount == 0x0000) { /* * Most chipsets correctly interpret a length of 0x0000 as 64KB, * but at least one (e.g. CS5530) misinterprets it as zero (!). * So here we break the 64KB entry into two 32KB entries instead. */ if (count++ >= PRD_ENTRIES) { printk("%s: DMA table too small\n", drive->name); goto use_pio_instead; } *table++ = cpu_to_le32(0x8000); *table++ = cpu_to_le32(cur_addr + 0x8000); xcount = 0x8000; } *table++ = cpu_to_le32(xcount); cur_addr += bcount; cur_len -= bcount; } } sg++; i--; } if (count) { if (!is_trm290_chipset) *--table |= cpu_to_le32(0x80000000); return count; } printk("%s: empty DMA table?\n", drive->name);use_pio_instead: pci_unmap_sg(HWIF(drive)->pci_dev, HWIF(drive)->sg_table, HWIF(drive)->sg_nents, HWIF(drive)->sg_dma_direction); HWIF(drive)->sg_dma_active = 0; return 0; /* revert to PIO for this request */}/* Teardown mappings after DMA has completed. */void ide_destroy_dmatable (ide_drive_t *drive){ struct pci_dev *dev = HWIF(drive)->pci_dev; struct scatterlist *sg = HWIF(drive)->sg_table; int nents = HWIF(drive)->sg_nents; pci_unmap_sg(dev, sg, nents, HWIF(drive)->sg_dma_direction); HWIF(drive)->sg_dma_active = 0;}/* * For both Blacklisted and Whitelisted drives. * This is setup to be called as an extern for future support * to other special driver code. */int check_drive_lists (ide_drive_t *drive, int good_bad){ struct hd_driveid *id = drive->id;#ifdef CONFIG_IDEDMA_NEW_DRIVE_LISTINGS if (good_bad) { return in_drive_list(id, drive_whitelist); } else { int blacklist = in_drive_list(id, drive_blacklist); if (blacklist) printk("%s: Disabling (U)DMA for %s\n", drive->name, id->model); return(blacklist); }#else /* !CONFIG_IDEDMA_NEW_DRIVE_LISTINGS */ const char **list; if (good_bad) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -