⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lapack.f

📁 分子动力学程序dynamo
💻 F
📖 第 1 页 / 共 5 页
字号:
**  SIDE    (input) CHARACTER*1*          = 'L': form  H * C*          = 'R': form  C * H**  M       (input) INTEGER*          The number of rows of the matrix C.**  N       (input) INTEGER*          The number of columns of the matrix C.**  V       (input) DOUBLE PRECISION array, dimension*                     (1 + (M-1)*abs(INCV)) if SIDE = 'L'*                  or (1 + (N-1)*abs(INCV)) if SIDE = 'R'*          The vector v in the representation of H. V is not used if*          TAU = 0.**  INCV    (input) INTEGER*          The increment between elements of v. INCV <> 0.**  TAU     (input) DOUBLE PRECISION*          The value tau in the representation of H.**  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)*          On entry, the m by n matrix C.*          On exit, C is overwritten by the matrix H * C if SIDE = 'L',*          or C * H if SIDE = 'R'.**  LDC     (input) INTEGER*          The leading dimension of the array C. LDC >= max(1,M).**  WORK    (workspace) DOUBLE PRECISION array, dimension*                         (N) if SIDE = 'L'*                      or (M) if SIDE = 'R'**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   ONE, ZERO      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )*     ..*     .. External Subroutines ..      EXTERNAL           DGEMV, DGER*     ..*     .. External Functions ..      LOGICAL            LSAME      EXTERNAL           LSAME*     ..*     .. Executable Statements ..*      IF( LSAME( SIDE, 'L' ) ) THEN**        Form  H * C*         IF( TAU.NE.ZERO ) THEN**           w := C' * v*            CALL DGEMV( 'Transpose', M, N, ONE, C, LDC, V, INCV, ZERO,     $                  WORK, 1 )**           C := C - v * w'*            CALL DGER( M, N, -TAU, V, INCV, WORK, 1, C, LDC )         END IF      ELSE**        Form  C * H*         IF( TAU.NE.ZERO ) THEN**           w := C * v*            CALL DGEMV( 'No transpose', M, N, ONE, C, LDC, V, INCV,     $                  ZERO, WORK, 1 )**           C := C - w * v'*            CALL DGER( M, N, -TAU, WORK, 1, V, INCV, C, LDC )         END IF      END IF      RETURN**     End of DLARF*      END      SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU )**  -- LAPACK auxiliary routine (version 2.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     September 30, 1994**     .. Scalar Arguments ..      INTEGER            INCX, N      DOUBLE PRECISION   ALPHA, TAU*     ..*     .. Array Arguments ..      DOUBLE PRECISION   X( * )*     ..**  Purpose*  =======**  DLARFG generates a real elementary reflector H of order n, such*  that**        H * ( alpha ) = ( beta ),   H' * H = I.*            (   x   )   (   0  )**  where alpha and beta are scalars, and x is an (n-1)-element real*  vector. H is represented in the form**        H = I - tau * ( 1 ) * ( 1 v' ) ,*                      ( v )**  where tau is a real scalar and v is a real (n-1)-element*  vector.**  If the elements of x are all zero, then tau = 0 and H is taken to be*  the unit matrix.**  Otherwise  1 <= tau <= 2.**  Arguments*  =========**  N       (input) INTEGER*          The order of the elementary reflector.**  ALPHA   (input/output) DOUBLE PRECISION*          On entry, the value alpha.*          On exit, it is overwritten with the value beta.**  X       (input/output) DOUBLE PRECISION array, dimension*                         (1+(N-2)*abs(INCX))*          On entry, the vector x.*          On exit, it is overwritten with the vector v.**  INCX    (input) INTEGER*          The increment between elements of X. INCX > 0.**  TAU     (output) DOUBLE PRECISION*          The value tau.**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   ONE, ZERO      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )*     ..*     .. Local Scalars ..      INTEGER            J, KNT      DOUBLE PRECISION   BETA, RSAFMN, SAFMIN, XNORM*     ..*     .. External Functions ..      DOUBLE PRECISION   DLAMCH, DLAPY2, DNRM2      EXTERNAL           DLAMCH, DLAPY2, DNRM2*     ..*     .. Intrinsic Functions ..      INTRINSIC          ABS, SIGN*     ..*     .. External Subroutines ..      EXTERNAL           DSCAL*     ..*     .. Executable Statements ..*      IF( N.LE.1 ) THEN         TAU = ZERO         RETURN      END IF*      XNORM = DNRM2( N-1, X, INCX )*      IF( XNORM.EQ.ZERO ) THEN**        H  =  I*         TAU = ZERO      ELSE**        general case*         BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )         SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' )         IF( ABS( BETA ).LT.SAFMIN ) THEN**           XNORM, BETA may be inaccurate; scale X and recompute them*            RSAFMN = ONE / SAFMIN            KNT = 0   10       CONTINUE            KNT = KNT + 1            CALL DSCAL( N-1, RSAFMN, X, INCX )            BETA = BETA*RSAFMN            ALPHA = ALPHA*RSAFMN            IF( ABS( BETA ).LT.SAFMIN )     $         GO TO 10**           New BETA is at most 1, at least SAFMIN*            XNORM = DNRM2( N-1, X, INCX )            BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )            TAU = ( BETA-ALPHA ) / BETA            CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )**           If ALPHA is subnormal, it may lose relative accuracy*            ALPHA = BETA            DO 20 J = 1, KNT               ALPHA = ALPHA*SAFMIN   20       CONTINUE         ELSE            TAU = ( BETA-ALPHA ) / BETA            CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )            ALPHA = BETA         END IF      END IF*      RETURN**     End of DLARFG*      END      SUBROUTINE DLARTG( F, G, CS, SN, R )**  -- LAPACK auxiliary routine (version 2.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     September 30, 1994**     .. Scalar Arguments ..      DOUBLE PRECISION   CS, F, G, R, SN*     ..**  Purpose*  =======**  DLARTG generate a plane rotation so that**     [  CS  SN  ]  .  [ F ]  =  [ R ]   where CS**2 + SN**2 = 1.*     [ -SN  CS  ]     [ G ]     [ 0 ]**  This is a slower, more accurate version of the BLAS1 routine DROTG,*  with the following other differences:*     F and G are unchanged on return.*     If G=0, then CS=1 and SN=0.*     If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any*        floating point operations (saves work in DBDSQR when*        there are zeros on the diagonal).**  If F exceeds G in magnitude, CS will be positive.**  Arguments*  =========**  F       (input) DOUBLE PRECISION*          The first component of vector to be rotated.**  G       (input) DOUBLE PRECISION*          The second component of vector to be rotated.**  CS      (output) DOUBLE PRECISION*          The cosine of the rotation.**  SN      (output) DOUBLE PRECISION*          The sine of the rotation.**  R       (output) DOUBLE PRECISION*          The nonzero component of the rotated vector.**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   ZERO      PARAMETER          ( ZERO = 0.0D0 )      DOUBLE PRECISION   ONE      PARAMETER          ( ONE = 1.0D0 )      DOUBLE PRECISION   TWO      PARAMETER          ( TWO = 2.0D0 )*     ..*     .. Local Scalars ..      LOGICAL            FIRST      INTEGER            COUNT, I      DOUBLE PRECISION   EPS, F1, G1, SAFMIN, SAFMN2, SAFMX2, SCALE*     ..*     .. External Functions ..      DOUBLE PRECISION   DLAMCH      EXTERNAL           DLAMCH*     ..*     .. Intrinsic Functions ..      INTRINSIC          ABS, INT, LOG, MAX, SQRT*     ..*     .. Save statement ..      SAVE               FIRST, SAFMX2, SAFMIN, SAFMN2*     ..*     .. Data statements ..      DATA               FIRST / .TRUE. /*     ..*     .. Executable Statements ..*      IF( FIRST ) THEN         FIRST = .FALSE.         SAFMIN = DLAMCH( 'S' )         EPS = DLAMCH( 'E' )         SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /     $            LOG( DLAMCH( 'B' ) ) / TWO )         SAFMX2 = ONE / SAFMN2      END IF      IF( G.EQ.ZERO ) THEN         CS = ONE         SN = ZERO         R = F      ELSE IF( F.EQ.ZERO ) THEN         CS = ZERO         SN = ONE         R = G      ELSE         F1 = F         G1 = G         SCALE = MAX( ABS( F1 ), ABS( G1 ) )         IF( SCALE.GE.SAFMX2 ) THEN            COUNT = 0   10       CONTINUE            COUNT = COUNT + 1            F1 = F1*SAFMN2            G1 = G1*SAFMN2            SCALE = MAX( ABS( F1 ), ABS( G1 ) )            IF( SCALE.GE.SAFMX2 )     $         GO TO 10            R = SQRT( F1**2+G1**2 )            CS = F1 / R            SN = G1 / R            DO 20 I = 1, COUNT               R = R*SAFMX2   20       CONTINUE         ELSE IF( SCALE.LE.SAFMN2 ) THEN            COUNT = 0   30       CONTINUE            COUNT = COUNT + 1            F1 = F1*SAFMX2            G1 = G1*SAFMX2            SCALE = MAX( ABS( F1 ), ABS( G1 ) )            IF( SCALE.LE.SAFMN2 )     $         GO TO 30            R = SQRT( F1**2+G1**2 )            CS = F1 / R            SN = G1 / R            DO 40 I = 1, COUNT               R = R*SAFMN2   40       CONTINUE         ELSE            R = SQRT( F1**2+G1**2 )            CS = F1 / R            SN = G1 / R         END IF         IF( ABS( F ).GT.ABS( G ) .AND. CS.LT.ZERO ) THEN            CS = -CS            SN = -SN            R = -R         END IF      END IF      RETURN**     End of DLARTG*      END      SUBROUTINE DLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )**  -- LAPACK auxiliary routine (version 2.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     February 29, 1992**     .. Scalar Arguments ..      CHARACTER          TYPE      INTEGER            INFO, KL, KU, LDA, M, N      DOUBLE PRECISION   CFROM, CTO*     ..*     .. Array Arguments ..      DOUBLE PRECISION   A( LDA, * )*     ..**  Purpose*  =======**  DLASCL multiplies the M by N real matrix A by the real scalar*  CTO/CFROM.  This is done without over/underflow as long as the final*  result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that*  A may be full, upper triangular, lower triangular, upper Hessenberg,*  or banded.**  Arguments*  =========**  TYPE    (input) CHARACTER*1*          TYPE indices the storage type of the input matrix.*          = 'G':  A is a full matrix.*          = 'L':  A is a lower triangular matrix.*          = 'U':  A is an upper triangular matrix.*          = 'H':  A is an upper Hessenberg matrix.*          = 'B':  A is a symmetric band matrix with lower bandwidth KL*                  and upper bandwidth KU and with the only the lower*                  half stored.*          = 'Q':  A is a symmetric band matrix with lower bandwidth KL*                  and upper bandwidth KU and with the only the upper*                  half stored.*          = 'Z':  A is a band matrix with lower bandwidth KL and upper*                  bandwidth KU.**  KL      (input) INTEGER*          The lower bandwidth of A.  Referenced only if TYPE = 'B',*          'Q' or 'Z'.**  KU      (input) INTEGER*          The upper bandwidth of A.  Referenced only if TYPE = 'B',*          'Q' or 'Z'.**  CFROM   (input) DOUBLE PRECISION*  CTO     (input) DOUBLE PRECISION*          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed*          without over/underflow if the final result CTO*A(I,J)/CFROM*          can be represented without over/underflow.  CFROM must be*          nonzero.**  M       (input) INTEGER*          The number of rows of the matrix A.  M >= 0.**  N       (input) INTEGER*          The number of columns of the matrix A.  N >= 0.**  A       (input/output) DOUBLE PRECISION array, dimension (LDA,M)*          The matrix to be multiplied by CTO/CFROM.  See TYPE for the*          storage type.**  LDA     (input) INTEGER*          The leading dimension of the array A.  LDA >= max(1,M).**  INFO    (output) INTEGER*          0  - successful exit*          <0 - if INFO = -i, the i-th argument had an illegal value.**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   ZERO, ONE      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )*     ..*     .. Local Scalars ..      LOGICAL            DONE      INTEGER            I, ITYPE, J, K1, K2, K3, K4      DOUBLE PRECISION   BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -