📄 inflate.c
字号:
while (bits < (unsigned)(n)) \ PULLBYTE(); \ } while (0)/* Return the low n bits of the bit accumulator (n < 16) */#define BITS(n) \ ((unsigned)hold & ((1U << (n)) - 1))/* Remove n bits from the bit accumulator */#define DROPBITS(n) \ do { \ hold >>= (n); \ bits -= (unsigned)(n); \ } while (0)/* Remove zero to seven bits as needed to go to a byte boundary */#define BYTEBITS() \ do { \ hold >>= bits & 7; \ bits -= bits & 7; \ } while (0)/* Reverse the bytes in a 32-bit value */#define REVERSE(q) \ ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \ (((q) & 0xff00) << 8) + (((q) & 0xff) << 24))/* inflate() uses a state machine to process as much input data and generate as much output data as possible before returning. The state machine is structured roughly as follows: for (;;) switch (state) { ... case STATEn: if (not enough input data or output space to make progress) return; ... make progress ... state = STATEm; break; ... } so when inflate() is called again, the same case is attempted again, and if the appropriate resources are provided, the machine proceeds to the next state. The NEEDBITS() macro is usually the way the state evaluates whether it can proceed or should return. NEEDBITS() does the return if the requested bits are not available. The typical use of the BITS macros is: NEEDBITS(n); ... do something with BITS(n) ... DROPBITS(n); where NEEDBITS(n) either returns from inflate() if there isn't enough input left to load n bits into the accumulator, or it continues. BITS(n) gives the low n bits in the accumulator. When done, DROPBITS(n) drops the low n bits off the accumulator. INITBITS() clears the accumulator and sets the number of available bits to zero. BYTEBITS() discards just enough bits to put the accumulator on a byte boundary. After BYTEBITS() and a NEEDBITS(8), then BITS(8) would return the next byte in the stream. NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return if there is no input available. The decoding of variable length codes uses PULLBYTE() directly in order to pull just enough bytes to decode the next code, and no more. Some states loop until they get enough input, making sure that enough state information is maintained to continue the loop where it left off if NEEDBITS() returns in the loop. For example, want, need, and keep would all have to actually be part of the saved state in case NEEDBITS() returns: case STATEw: while (want < need) { NEEDBITS(n); keep[want++] = BITS(n); DROPBITS(n); } state = STATEx; case STATEx: As shown above, if the next state is also the next case, then the break is omitted. A state may also return if there is not enough output space available to complete that state. Those states are copying stored data, writing a literal byte, and copying a matching string. When returning, a "goto inf_leave" is used to update the total counters, update the check value, and determine whether any progress has been made during that inflate() call in order to return the proper return code. Progress is defined as a change in either strm->avail_in or strm->avail_out. When there is a window, goto inf_leave will update the window with the last output written. If a goto inf_leave occurs in the middle of decompression and there is no window currently, goto inf_leave will create one and copy output to the window for the next call of inflate(). In this implementation, the flush parameter of inflate() only affects the return code (per zlib.h). inflate() always writes as much as possible to strm->next_out, given the space available and the provided input--the effect documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers the allocation of and copying into a sliding window until necessary, which provides the effect documented in zlib.h for Z_FINISH when the entire input stream available. So the only thing the flush parameter actually does is: when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it will return Z_BUF_ERROR if it has not reached the end of the stream. */int ZEXPORT inflate(strm, flush)z_streamp strm;int flush;{ struct inflate_state FAR *state; unsigned char FAR *next; /* next input */ unsigned char FAR *put; /* next output */ unsigned have, left; /* available input and output */ unsigned long hold; /* bit buffer */ unsigned bits; /* bits in bit buffer */ unsigned in, out; /* save starting available input and output */ unsigned copy; /* number of stored or match bytes to copy */ unsigned char FAR *from; /* where to copy match bytes from */ code this; /* current decoding table entry */ code last; /* parent table entry */ unsigned len; /* length to copy for repeats, bits to drop */ int ret; /* return code */#ifdef GUNZIP unsigned char hbuf[4]; /* buffer for gzip header crc calculation */#endif static const unsigned short order[19] = /* permutation of code lengths */ {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; if (strm == Z_NULL || strm->state == Z_NULL || strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */ LOAD(); in = have; out = left; ret = Z_OK; for (;;) switch (state->mode) { case HEAD: if (state->wrap == 0) { state->mode = TYPEDO; break; } NEEDBITS(16);#ifdef GUNZIP if ((state->wrap & 2) && hold == 0x8b1f) { /* gzip header */ state->check = crc32(0L, Z_NULL, 0); CRC2(state->check, hold); INITBITS(); state->mode = FLAGS; break; } state->flags = 0; /* expect zlib header */ if (!(state->wrap & 1) || /* check if zlib header allowed */#else if (#endif ((BITS(8) << 8) + (hold >> 8)) % 31) { strm->msg = (char *)"incorrect header check"; state->mode = BAD; break; } if (BITS(4) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } DROPBITS(4); if (BITS(4) + 8 > state->wbits) { strm->msg = (char *)"invalid window size"; state->mode = BAD; break; } Tracev((stderr, "inflate: zlib header ok\n")); strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = hold & 0x200 ? DICTID : TYPE; INITBITS(); break;#ifdef GUNZIP case FLAGS: NEEDBITS(16); state->flags = (int)(hold); if ((state->flags & 0xff) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } if (state->flags & 0xe000) { strm->msg = (char *)"unknown header flags set"; state->mode = BAD; break; } if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = TIME; case TIME: NEEDBITS(32); if (state->flags & 0x0200) CRC4(state->check, hold); INITBITS(); state->mode = OS; case OS: NEEDBITS(16); if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = EXLEN; case EXLEN: if (state->flags & 0x0400) { NEEDBITS(16); state->length = (unsigned)(hold); if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); } state->mode = EXTRA; case EXTRA: if (state->flags & 0x0400) { copy = state->length; if (copy > have) copy = have; if (copy) { if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; state->length -= copy; } if (state->length) goto inf_leave; } state->mode = NAME; case NAME: if (state->flags & 0x0800) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); } while (len && copy < have); if (state->flags & 0x02000) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } state->mode = COMMENT; case COMMENT: if (state->flags & 0x1000) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); } while (len && copy < have); if (state->flags & 0x02000) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } state->mode = HCRC; case HCRC: if (state->flags & 0x0200) { NEEDBITS(16); if (hold != (state->check & 0xffff)) { strm->msg = (char *)"header crc mismatch"; state->mode = BAD; break; } INITBITS(); } strm->adler = state->check = crc32(0L, Z_NULL, 0); state->mode = TYPE; break;#endif case DICTID: NEEDBITS(32); strm->adler = state->check = REVERSE(hold); INITBITS(); state->mode = DICT; case DICT: if (state->havedict == 0) { RESTORE(); return Z_NEED_DICT; } strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = TYPE; case TYPE: if (flush == Z_BLOCK) goto inf_leave; case TYPEDO: if (state->last) { BYTEBITS(); state->mode = CHECK; break; } NEEDBITS(3); state->last = BITS(1); DROPBITS(1); switch (BITS(2)) { case 0: /* stored block */ Tracev((stderr, "inflate: stored block%s\n", state->last ? " (last)" : "")); state->mode = STORED; break; case 1: /* fixed block */ fixedtables(state); Tracev((stderr, "inflate: fixed codes block%s\n", state->last ? " (last)" : "")); state->mode = LEN; /* decode codes */ break; case 2: /* dynamic block */ Tracev((stderr, "inflate: dynamic codes block%s\n", state->last ? " (last)" : "")); state->mode = TABLE; break; case 3: strm->msg = (char *)"invalid block type"; state->mode = BAD; } DROPBITS(2); break; case STORED: BYTEBITS(); /* go to byte boundary */ NEEDBITS(32); if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { strm->msg = (char *)"invalid stored block lengths"; state->mode = BAD; break; } state->length = (unsigned)hold & 0xffff; Tracev((stderr, "inflate: stored length %u\n", state->length)); INITBITS(); state->mode = COPY; case COPY: copy = state->length; if (copy) { if (copy > have) copy = have; if (copy > left) copy = left; if (copy == 0) goto inf_leave; zmemcpy(put, next, copy); have -= copy; next += copy; left -= copy; put += copy; state->length -= copy; break; } Tracev((stderr, "inflate: stored end\n")); state->mode = TYPE; break; case TABLE: NEEDBITS(14); state->nlen = BITS(5) + 257; DROPBITS(5); state->ndist = BITS(5) + 1; DROPBITS(5); state->ncode = BITS(4) + 4; DROPBITS(4);#ifndef PKZIP_BUG_WORKAROUND if (state->nlen > 286 || state->ndist > 30) { strm->msg = (char *)"too many length or distance symbols"; state->mode = BAD; break; }#endif Tracev((stderr, "inflate: table sizes ok\n")); state->have = 0; state->mode = LENLENS; case LENLENS: while (state->have < state->ncode) { NEEDBITS(3); state->lens[order[state->have++]] = (unsigned short)BITS(3); DROPBITS(3); } while (state->have < 19) state->lens[order[state->have++]] = 0; state->next = state->codes; state->lencode = (code const FAR *)(state->next); state->lenbits = 7; ret = inflate_table(CODES, state->lens, 19, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid code lengths set"; state->mode = BAD; break; } Tracev((stderr, "inflate: code lengths ok\n")); state->have = 0; state->mode = CODELENS; case CODELENS: while (state->have < state->nlen + state->ndist) { for (;;) { this = state->lencode[BITS(state->lenbits)]; if ((unsigned)(this.bits) <= bits) break; PULLBYTE(); } if (this.val < 16) { NEEDBITS(this.bits); DROPBITS(this.bits); state->lens[state->have++] = this.val; } else { if (this.val == 16) { NEEDBITS(this.bits + 2); DROPBITS(this.bits); if (state->have == 0) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } len = state->lens[state->have - 1]; copy = 3 + BITS(2); DROPBITS(2); } else if (this.val == 17) { NEEDBITS(this.bits + 3); DROPBITS(this.bits); len = 0; copy = 3 + BITS(3); DROPBITS(3); } else { NEEDBITS(this.bits + 7);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -