📄 scg.m
字号:
function [x, options, errlog, pointlog, scalelog] = scg(f, x, options, gradf, varargin)%SCG Scaled conjugate gradient optimization.%% Description% [X, OPTIONS] = SCG(F, X, OPTIONS, GRADF) uses a scaled conjugate% gradients algorithm to find a local minimum of the function F(X)% whose gradient is given by GRADF(X). Here X is a row vector and F% returns a scalar value. The point at which F has a local minimum is% returned as X. The function value at that point is returned in% OPTIONS(8).%% [X, OPTIONS, ERRLOG, POINTLOG, SCALELOG] = SCG(F, X, OPTIONS, GRADF)% also returns (optionally) a log of the error values after each cycle% in ERRLOG, a log of the points visited in POINTLOG, and a log of the% scale values in the algorithm in SCALELOG.%% SCG(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional arguments to% be passed to F() and GRADF(). The optional parameters have the% following interpretations.%% OPTIONS(1) is set to 1 to display error values; also logs error% values in the return argument ERRLOG, and the points visited in the% return argument POINTSLOG. If OPTIONS(1) is set to 0, then only% warning messages are displayed. If OPTIONS(1) is -1, then nothing is% displayed.%% OPTIONS(2) is a measure of the absolute precision required for the% value of X at the solution. If the absolute difference between the% values of X between two successive steps is less than OPTIONS(2),% then this condition is satisfied.%% OPTIONS(3) is a measure of the precision required of the objective% function at the solution. If the absolute difference between the% objective function values between two successive steps is less than% OPTIONS(3), then this condition is satisfied. Both this and the% previous condition must be satisfied for termination.%% OPTIONS(9) is set to 1 to check the user defined gradient function.%% OPTIONS(10) returns the total number of function evaluations% (including those in any line searches).%% OPTIONS(11) returns the total number of gradient evaluations.%% OPTIONS(14) is the maximum number of iterations; default 100.%% See also% CONJGRAD, QUASINEW%% Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)% This code forms part of the Netlab library, available from % http://www.ncrg.aston.ac.uk/ % This program is free software; you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation; either version 2 of the License, or% any later version.%% This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the% GNU General Public License for more details.%% You should have received a copy of the GNU General Public License% along with this program; if not, write to the Free Software% Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.% Set up the options.if length(options) < 18 error('Options vector too short')endif(options(14)) niters = options(14);else niters = 100;enddisplay = options(1);gradcheck = options(9);% Set up strings for evaluating function and gradientf = fcnchk(f, length(varargin));gradf = fcnchk(gradf, length(varargin));nparams = length(x);% Check gradientsif (gradcheck) feval('gradchek', x, f, gradf, varargin{:});endsigma0 = 1.0e-4;fold = feval(f, x, varargin{:}); % Initial function value.options(10) = options(10) + 1; % Increment function evaluation counter.grad = feval(gradf, x, varargin{:}); % Initial gradient.options(11) = options(11) + 1; % Increment gradient evaluation counter.srch = - grad; % Initial search direction.success = 1;lambda = 1.0; % Initial scale parameter.lambdamin = 1.0e-15; lambdamax = 1.0e100;n = 1; % n counts number of iterations.nsuccess = 0; % nsuccess counts number of successes.xval = x;% Main optimization loop.while (n <= niters) % Calculate first and second directional derivatives. if (success == 1) mu = srch*grad'; if (mu >= 0) srch = - grad; mu = srch*grad'; end kappa = srch*srch'; sigma = sigma0/sqrt(kappa); x = xval + sigma*srch; gplus = feval(gradf, x, varargin{:}); options(11) = options(11) + 1; gamma = (srch*(gplus' - grad'))/sigma; end % Increase effective curvature and evaluate step size alpha. delta = gamma + lambda*kappa; if (delta <= 0) delta = lambda*kappa; lambda = lambda - gamma/kappa; end alpha = - mu/delta; % Calculate the comparison ratio. x = xval + alpha*srch; fnew = feval(f, x, varargin{:}); options(10) = options(10) + 1; rho = 2*(fnew - fold)/(alpha*mu); if (rho >= 0) success = 1; else success = 0; end % Update the parameters to new location. if (success == 1) xval = xval + alpha*srch; nsuccess = nsuccess + 1; fnow = fnew; else fnow = fold; end x = xval; if nargout >= 3 % Store relevant variables errlog(n) = fnow; % Current function value if nargout >= 4 pointlog(n,:) = x; % Current position if nargout >= 5 scalelog(n) = lambda; % Current scale parameter end end end if display > 0 fprintf(1, 'Cycle %4d Error %11.6f Scale %e\n', n, fold, lambda); end if (success == 1) % Test for termination if (max(abs(alpha*srch)) < options(2) & max(abs(fnew-fold)) < options(3)) options(8) = fnew; return; else % Update variables for new position fold = fnew; gold = grad; grad = feval(gradf, x, varargin{:}); options(11) = options(11) + 1; end end % Adjust lambda according to comparison ratio. if (rho < 0.25) lambda = 4.0*lambda; if (lambda > lambdamax) lambda = lambdamax; end end if (rho > 0.75) lambda = 0.5*lambda; if (lambda < lambdamin) lambda = lambdamin; end end % Re-compute search direction using Hestenes-Steifel formula, or re-start % in direction of negative gradient after nparams steps. if (nsuccess == nparams) srch = -grad; nsuccess = 0; else if (success == 1) beta = (gold - grad)*grad'/mu; srch = - grad + beta*srch; end end n = n + 1;end% If we get here, then we haven't terminated in the given number of % iterations.options(8) = fold;if (options(1) >= 0) disp('Warning: Maximum number of iterations has been exceeded');end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -