⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fmd.c

📁 Embest IDE下s3c2440的测试工程
💻 C
📖 第 1 页 / 共 2 页
字号:
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
PARTICULAR PURPOSE.
Copyright (c) 2002  Microsoft Corporation

Module Name:	FMD.CPP

Abstract:		FLASH Media Driver Interface Samsung K9F2808UOB NAND Flash Chip
                on AT-Rise development board.

Notes:			Currently, *only* the CE 3.0 (and earlier) power management logic
				is implemented (i.e. the PowerUp() and PowerDown() APIs).

Environment:	As noted, this media driver works on behalf of the FAL to directly
				access the underlying FLASH hardware.  Consquently, this module
				needs to be linked with FAL.LIB to produce the device driver
				named FLASHDRV.DLL.

-----------------------------------------------------------------------------*/
#include "fmd.h"

#define BOOT_LOADER 1
#define EdbgOutputDebugString Uart_Printf

typedef BYTE /*near*/           *PBYTE;
//  Use Macros here to avoid extra over head for c function calls
#define READ_REGISTER_BYTE(p) (*(volatile PBYTE) (p))
#define WRITE_REGISTER_BYTE(p, v) (*(volatile PBYTE)(p)) = (v)
#define READ_REGISTER_USHORT(p) (*(volatile PUSHORT) (p))
#define WRITE_REGISTER_USHORT(p, v) (*(volatile PUSHORT)(p)) = (v)
#define READ_REGISTER_ULONG(p)  (*(volatile PULONG) (p))
#define WRITE_REGISTER_ULONG(p, v) (*(volatile PULONG)(p)) = (v)

//  Registers
volatile PUSHORT pNFReg;
volatile PUSHORT pNFCONF;
volatile PUSHORT pNFCONT;
volatile PUSHORT pNFCMD;
volatile PUSHORT pNFADDR;
volatile PUSHORT  pNFDATA;
volatile PUSHORT pNFSTAT;
volatile PULONG  pNFMECC0;
volatile PULONG  pNFSECC;


#define NFDATA 0x4E000010

//  Status bit pattern
#define STATUS_READY                0x40
#define STATUS_ERROR                0x01

// HCLK=133Mhz
#define TACLS		0
#define TWRPH0		6
#define TWRPH1		2

#define CMD_READ                    0x00        //  Read
#define CMD_READ1                   0x01        //  Read1
#define CMD_READ2                   0x30        //  Read2
#define CMD_READID                  0x90        //  ReadID
#define CMD_WRITE                   0x80        //  Write phase 1
#define CMD_WRITE2                  0x10        //  Write phase 2
#define CMD_ERASE                   0x60        //  Erase phase 1
#define CMD_ERASE2                  0xd0        //  Erase phase 2
#define CMD_STATUS                  0x70        //  Status read
#define CMD_RESET                   0xff        //  Reset
//  MACROS
#define NF_CE_L()			WRITE_REGISTER_USHORT(pNFCONT, (USHORT) (READ_REGISTER_USHORT(pNFCONT) & ~(1<<1)))
#define NF_CE_H()			WRITE_REGISTER_USHORT(pNFCONT, (USHORT) (READ_REGISTER_USHORT(pNFCONT) | (1<<1)))
#define NF_CMD(cmd)			WRITE_REGISTER_USHORT(pNFCMD, (USHORT) (cmd))
#define NF_ADDR(addr)		WRITE_REGISTER_USHORT(pNFADDR, (USHORT) (addr))
#define NF_DATA_R()			READ_REGISTER_BYTE(pNFDATA)
#define NF_DATA_W(val)		WRITE_REGISTER_BYTE(pNFDATA, (BYTE) (val))
#define NF_DATA_R4()		READ_REGISTER_ULONG(pNFDATA)
#define NF_DATA_W4(val)		WRITE_REGISTER_ULONG(pNFDATA, (ULONG) (val))
#define NF_STAT()			READ_REGISTER_USHORT(pNFSTAT)
#define NF_MECC_UnLock()	WRITE_REGISTER_USHORT(pNFCONT, (USHORT) (READ_REGISTER_USHORT(pNFCONT) & ~(1<<5)))
#define NF_MECC_Lock()		WRITE_REGISTER_USHORT(pNFCONT, (USHORT) (READ_REGISTER_USHORT(pNFCONT) | (1<<5)))
#define NF_RSTECC()			WRITE_REGISTER_USHORT(pNFCONT, (USHORT) (READ_REGISTER_USHORT(pNFCONT) | (1<<4)))
#define NF_WAITRB()			{while(!(NF_STAT() & (1<<1))) ;}
#define NF_CLEAR_RB()		WRITE_REGISTER_USHORT(pNFSTAT, (USHORT) (READ_REGISTER_USHORT(pNFSTAT) | (1<<2)))
#define NF_DETECT_RB()		{while(!(NF_STAT() & (1<<2)));}
#define NF_ECC()			READ_REGISTER_ULONG(pNFMECC0)

//  External function
extern BOOL ECC_CorrectData(LPBYTE pData, LPBYTE pExistingECC, LPBYTE pNewECC);

//  Flags and pointers
#define BADBLOCKMARK                0x00
//  VALIDADDR is 5 << 8
//
//  Explain:    5 means the 6th byte in spare area (517 byte in the sector)
//              Shift 8 bit to the left to form the correct address for 16bit port
//
#define VALIDADDR   0x05

#define OEMADDR		0x04					// 5th byte in spare area

//  Reset the chip
//
void NF_Reset()
{
	int i;
    NF_CE_L();

	NF_CLEAR_RB();
    NF_CMD(CMD_RESET);
	for(i=0;i<10;i++);  //tWB = 100ns. //??????
	NF_DETECT_RB();
    NF_CE_H();

}

/*
 Here is the statement from SamSung's K9F2808U0B datasheet:

 All device locations are erased (FFh) except location where the invalid block(s)
 information is written prior to shipping. The invalid block(s) status is defined
 by the 6th byte in the spare area. Samsung makes sure that either the 1st or 2nd
 page of every invalid block has non-FFh data at the column address of 517. Since
 the invalid block information is also erasable in most cases, it is impossible to
 recover the information once it has been erased.

 Here is the logic we are taking:

 If the block is invalid, non-FFh value in column address of 517, we don't use that
 block anyway. Otherwise, the whole spare area is subject to use by our program. If
 we found additional bad block later on, we don't necessary have to use column 517
 to represent invalid block. We could use any of the 16 byte spare area.

 But for simplicity, in our current implementation, we avoid to touch column 517. So
 the we allocate SectorInfo as following:

  - - - - - - - - - - - - - - - -
 |R|R|R|R|O|V|R|R|E|E|E|E|E|E|E|E|
  - - - - - - - - - - - - - - - -

 Where  Rs are reserved bytes used by the FAL
        O is a byte for use by the OEM
        V is a byte indicating if the block is valid (a.k.a. bad)
        Es are bytes used for ECC

 */

/*
 *  NAND_ReadSectorInfo
 *
 *  Read SectorInfo out of the spare area. The current implementation only handles
 *  one sector at a time.
 */
void NAND_ReadSectorInfo(SECTOR_ADDR sectorAddr, PSectorInfo pInfo)
{
//	RETAILMSG(1, (TEXT("FlashDrv!FMD!NAND_ReadSectorInfo:  \r\n")));
    //  Chip enable
    NF_CE_L();
	NF_CLEAR_RB();

    //  Write the command
    NF_CMD(CMD_READ);
    //  Write the address
    NF_ADDR(2048&0xFF);
    NF_ADDR((2048>>8)&0xFF);
    NF_ADDR(sectorAddr & 0xff);
    NF_ADDR((sectorAddr >> 8) & 0xff);
    NF_ADDR((sectorAddr >> 16) & 0xff);
    NF_CMD(CMD_READ2);

//    if (NEED_EXT_ADDR) {
//        NF_ADDR((sectorAddr >> 16) & 0xff);
//    }

//	RETAILMSG(1, (TEXT("sectorAddr : %x \r\n"), sectorAddr));
    //  Wait for the Ready bit
	NF_DETECT_RB();	 // Wait tR(max 12us)

    //  Read the SectorInfo data (we only need to read first 8 bytes)
    pInfo->dwReserved1  = NF_DATA_R4();
//	RETAILMSG(1, (TEXT("pInfo->dwReserved1 = %x\r\n"), pInfo->dwReserved1));

    //  OEM byte
    pInfo->bOEMReserved = (BYTE) NF_DATA_R();
//	RETAILMSG(1, (TEXT("pInfo->bOEMReserved = %x\r\n"), pInfo->bOEMReserved));

    //  Read the bad block mark
    pInfo->bBadBlock = (BYTE) NF_DATA_R();
//	RETAILMSG(1, (TEXT("pInfo->bBadBlock = %x\r\n"), pInfo->bBadBlock));

    //  Second reserved field (WORD)
    pInfo->wReserved2 = ((BYTE) NF_DATA_R() << 8);
    pInfo->wReserved2 |= ((BYTE) NF_DATA_R());
//	RETAILMSG(1, (TEXT("pInfo->wReserved2 = %x\r\n"), pInfo->wReserved2));
//	RETAILMSG(1, (TEXT("\r\n")));

    NF_CE_H();

}

/*
 *  NAND_WriteSectorInfo
 *
 *  Write SectorInfo out to the spare area. The current implementation only handles
 *  one sector at a time.
 */
BOOL NAND_WriteSectorInfo(SECTOR_ADDR sectorAddr, PSectorInfo pInfo)
{
    BOOL    bRet = TRUE;

//	RETAILMSG(1, (TEXT("FlashDrv!FMD!NAND_WriteSectorInfo:  \r\n")));

    //  Chip enable
    NF_CE_L();
	NF_CLEAR_RB();

    //  Write the command
    //  First, let's point to the spare area
//    NF_CMD(CMD_READ2);
    NF_CMD(CMD_WRITE);

    //  Write the address
    NF_ADDR(2048&0xFF);
    NF_ADDR((2048>>8)&0xFF);
    NF_ADDR(sectorAddr & 0xff);
    NF_ADDR((sectorAddr >> 8) & 0xff);
    NF_ADDR((sectorAddr>>16)&0xff);

//    if (NEED_EXT_ADDR) {
//        NF_ADDR((sectorAddr >> 16) & 0xff);
//    }

    //  Now let's write the SectorInfo data
    //
    //  Write the first reserved field (DWORD)
    NF_DATA_W4( pInfo->dwReserved1 );

    //  Write OEM reserved flag
    NF_DATA_W( (pInfo->bOEMReserved) );

    //  Write the bad block flag
    NF_DATA_W( (pInfo->bBadBlock) );

    //  Write the second reserved field
    NF_DATA_W( (pInfo->wReserved2 >> 8) & 0xff );
    NF_DATA_W( (pInfo->wReserved2) );

    //  Issue the write complete command
    NF_CMD(CMD_WRITE2);

    //  Check ready bit
	NF_DETECT_RB();	 // Wait tR(max 12us)

    //  Check the status of program
    NF_CMD(CMD_STATUS);

    if(NF_DATA_R() & STATUS_ERROR) {
         Uart_Printf("NAND_WriteSectorInfo() ######## Error Programming page %d!\n", sectorAddr);
        bRet = FALSE;
    }

    NF_CE_H();

    return bRet;
}

/*-----------------------------------------------------------------------------
 *  FMD Interface functions
 *
 *----------------------------------------------------------------------------*/
//  FMD_Init
//
//  Initialize the flash chip
//
//  Note: Presently, the Flash size characteristics are hardcoded in CFNAND.H
//		  and are NOT stored in the registry.  Refer to the StratFlash FMD in
//		  %WINCEROOT%\PUBLIC\COMMON\OAK\DRIVERS\BLOCK\... for an example of how
//		  to use the registry for storing this information.
//
PVOID FMD_Init()//LPCTSTR lpActiveReg, PPCI_REG_INFO pRegIn, PPCI_REG_INFO pRegOut)
{
	
    //  0. Create the Mutex for shared access between the kernel and MSFLASH

//	RETAILMSG(1, (TEXT("FMD::FMD_Init:VirtualAlloc \r\n")));
    pNFReg = (PUSHORT)0x4E000000;

    pNFCONF = pNFReg;
    pNFCONT = (PUSHORT) ((PBYTE) pNFReg + 0x04);
    pNFCMD  = (PUSHORT) ((PBYTE) pNFReg + 0x08);
    pNFADDR = (PUSHORT) ((PBYTE) pNFReg + 0x0C);
    pNFDATA = (PULONG) ((PBYTE) pNFReg + 0x10);
    pNFSTAT = (PUSHORT) ((PBYTE) pNFReg + 0x20);
    pNFMECC0  = (PULONG)  ((PBYTE) pNFReg + 0x2C);
   pNFSECC = (PULONG)  ((PBYTE) pNFReg + 0x34);

    //  Now we need enable the NAND Flash controller
#if ID_NAND == ID_K9F1G08U0A
	WRITE_REGISTER_USHORT(pNFCONF, (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(1<<3)|(1<<2) |(0<<0));	
#elif ID_NAND == ID_K9K8G08U0A
WRITE_REGISTER_USHORT(pNFCONF, (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(1<<3)|(1<<2)|(1<<1)|(0<<0));
#elif ID_NAND == ID_K9S1208V0M
	WRITE_REGISTER_USHORT(pNFCONF, (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4) | (0<<0));
#endif
    WRITE_REGISTER_USHORT(pNFCONT, (0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0));
    WRITE_REGISTER_USHORT(pNFSTAT, 0);

    return (PVOID)pNFCONF;

ErrExit:
    return 0;
}

//  FMD_GetInfo
//
//  Return the Flash information
//
BOOL    FMD_GetInfo(PFlashInfo pFlashInfo)
{
    pFlashInfo->flashType = NAND;

    //  OK, instead of reading it from the chip, we use the hardcoded
    //  numbers here.

    pFlashInfo->dwNumBlocks			= NUM_BLOCKS;
    pFlashInfo->wSectorsPerBlock	= PAGES_PER_BLOCK;
    pFlashInfo->wDataBytesPerSector = SECTOR_SIZE;

    return TRUE;
}

//  FMD_ReadSector
//
//  Read the content of the sector.
//
//  startSectorAddr: Starting page address
//  pSectorBuff  : Buffer for the data portion
//  pSectorInfoBuff: Buffer for Sector Info structure
//  dwNumSectors : Number of sectors
//

typedef union _ECCRegVal
{
    DWORD   dwECCVal;
    BYTE    bECCBuf[4];
} ECCRegVal;

BOOL FMD_ReadSector(SECTOR_ADDR startSectorAddr, LPBYTE pSectorBuff,
                        PSectorInfo pSectorInfoBuff, DWORD dwNumSectors)
{
    DWORD       i;
    BYTE        eccBuf[8];
    ECCRegVal   eccRegVal;

//	RETAILMSG(1, (TEXT("FlashDrv!FMD!FMD_ReadSector:  startSectorAddr = %x \r\n"), startSectorAddr));
    //  Sanity check
    if (!pSectorBuff && !pSectorInfoBuff || dwNumSectors > 1) {
#ifdef BOOT_LOADER
        EdbgOutputDebugString("Invalid parameters!\r\n");
#else
 //       RETAILMSG(1, (TEXT("Invalid parameters!\n")));
#endif

        return FALSE;
    }

	NF_Reset();

    if(!pSectorBuff) {
        //  We are reading spare only
        NAND_ReadSectorInfo(startSectorAddr, pSectorInfoBuff);

        //  There is no ECC for the sector info, so the read always succeed.
        return TRUE;
    }

//	RETAILMSG(1, (TEXT("FlashDrv!FMD!FMD_ReadSector:  startSectorAddr = %x \r\n"), startSectorAddr));

	//  Initialize ECC register
	NF_RSTECC();
	NF_MECC_UnLock();

	//  Enable the chip
	NF_CE_L();
	NF_CLEAR_RB();

	//  Issue command
	NF_CMD(CMD_READ);

	//  Set up address
	NF_ADDR(0x00);
	NF_ADDR(0x00);
	NF_ADDR((startSectorAddr) & 0xff);
	NF_ADDR((startSectorAddr >> 8) & 0xff);
	NF_ADDR((startSectorAddr>>16)&0xff);
	NF_CMD(CMD_READ2);

//	if (NEED_EXT_ADDR) {
//		NF_ADDR((startSectorAddr >> 16) & 0xff);
//	}

	NF_DETECT_RB();	 // Wait tR(max 12us)

	//  BUGBUG, because Media Player for Pocket PC sometimes pass us un-aligned buffer
	//  we have to waste cycle here to work around this problem
	if(1){// ((DWORD) pSectorBuff) & 0x3) {
		for(i=0; i<SECTOR_SIZE; i++) {
			pSectorBuff[i] = (BYTE) NF_DATA_R();
		}
	}
	else {
		//  The right way.
	//	__RdPage2048(pSectorBuff);
    }

/*
	for ( i = 0 ; i < 512; i++ )
#ifdef BOOT_LOADER
        EdbgOutputDebugString("%x ", *(pSectorBuff+i));
#else
        RETAILMSG(1, (TEXT("%x "), *(pSectorBuff+i)));
#endif
*/

    //  Do the ECC thing here
    //  We read the ECC value from the ECC register pFNECC
	NF_MECC_Lock();
    eccRegVal.dwECCVal = NF_ECC();

    //  Read the SectorInfo data
    if(pSectorInfoBuff) {
        //  Read the SectorInfo data (we only need to read first 8 bytes)
        pSectorInfoBuff->dwReserved1  = NF_DATA_R4();

        //  OEM byte
        pSectorInfoBuff->bOEMReserved = (BYTE) NF_DATA_R();

        //  Read the bad block mark
        pSectorInfoBuff->bBadBlock = (BYTE) NF_DATA_R();

        //  Second reserved field (WORD)
        pSectorInfoBuff->wReserved2 = ((BYTE) NF_DATA_R() << 8);
        pSectorInfoBuff->wReserved2 |= ((BYTE) NF_DATA_R());
    }
    else {
        //  Advance the read pointer
        for(i=0; i<sizeof(SectorInfo); i++) {
            eccBuf[i] = (BYTE) NF_DATA_R();
        }
    }

    //  Verify the ECC values
    //
    //  Read the ECC buffer
    for(i=0; i<3; i++) {
        eccBuf[i] = (BYTE) NF_DATA_R();
    }

    NF_CE_H();

    //  Copmare with the ECC generated from the HW

    if(eccBuf[0] != eccRegVal.bECCBuf[0] ||
       eccBuf[1] != eccRegVal.bECCBuf[1]  ||
       eccBuf[2] != eccRegVal.bECCBuf[2] ) {

#ifdef BOOT_LOADER
        EdbgOutputDebugString("FMD: ECC ERROR - Page #: %d\r\n", startSectorAddr);
        EdbgOutputDebugString("(%x:%x %x:%x %x:%x)\r\n", eccBuf[0], eccRegVal.bECCBuf[0], eccBuf[1], eccRegVal.bECCBuf[1], eccBuf[2], eccRegVal.bECCBuf[2]);
#else
        Uart_Printf("FMD: ECC ERROR - Page #: %d\r\n", startSectorAddr);
#endif

        //  Now try to correct them
        if(!ECC_CorrectData(pSectorBuff, eccBuf, eccRegVal.bECCBuf)) {
            Uart_Printf("FMD: Unable to correct the ECC error - Page #: %d\r\n",
                          startSectorAddr);

		return FALSE;
        }
    }

    return TRUE;
}

//
//  IsBlockBad
//
//  Check to see if the given block is bad. A block is bad if the 517th byte on
//  the first or second page is not 0xff.
//

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -