📄 nand.c
字号:
//====================================================================
// File Name : Nand.c
// Function : S3C2440 8-bit interface Nand Test program(this program use K9k2g16.c).
// Date : May xx, 2003
// Version : 0.0
// History
// R0.0 (200305xx): Modified for 2440 from 2410. -> DonGo
//====================================================================
/**************** K9s1208 NAND flash ********************/
// 1block=(512+16)bytes x 32pages
// 4096block
// Block: A[23:14], Page: [13:9]
/**************** K9K2G16 NAND flash *******************/
// 1block=(2048+64)bytes x 64pages
// 2048block
// Block: A[23:14], page: [13:9]
/*****************************************************/
/**************** K9F1G08 NAND flash *******************/
// 1block=(2048+64)bytes x 64pages
// 1024Block
// Block: A[23:14], page: [13:9]
/*****************************************************/
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include "def.h"
#include "option.h"
#include "2440addr.h"
#include "2440lib.h"
#include "loader.h"
#include "Nand.h"
U8 NF8_Spare_Data[64];
U32 srcAddress;
U32 targetBlock; // Block number (0 ~ 4095)
U32 targetSize; // Total byte size
extern U32 downloadAddress;
U32 downloadProgramSize;
volatile int NFConDone;
static U8 se8Buf[64]={
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff
};
static U8 vectors[] = {
0x6f, 0x00, 0x00, 0xea,
0x4d, 0x00, 0x00, 0xea,
0x52, 0x00, 0x00, 0xea,
0x5d, 0x00, 0x00, 0xea,
0x56, 0x00, 0x00, 0xea,
0xfe, 0xff, 0xff, 0xea,
0x42, 0x00, 0x00, 0xea,
0x3b, 0x00, 0x00, 0xea,
0x08, 0x00, 0x00, 0xea
};
static U32 se16Buf[32/2]={
0xffffffff,0xffffffff,0xffffffff,0xffffffff,
0xffffffff,0xffffffff,0xffffffff,0xffffffff,
0xffffffff,0xffffffff,0xffffffff,0xffffffff,
0xffffffff,0xffffffff,0xffffffff,0xffffffff
};
void __irq NFCon_Int(void);
//*************************************************
void * n8_func[][2]=
{
(void *)NF8_Print_Id, "Read ID ",
(void *)Nand_Reset, "Nand reset ",
(void *)Test_NF8_Block_Erase, "Block erase ",
(void *)Test_NF8_Page_Read, "Page read ",
(void *)Test_NF8_Page_Write, "Page write ",
(void *)Test_NF8_Rw, "Nand R/W test ",
(void *) NF8_PrintBadBlockNum, "Check Badblock ",
(void *)Test_NF8_Lock, "Nand Block lock ",
(void *)Test_NF8_SoftUnLock, "Soft Unlock ",
(void *)NandFlashProgram, "Nandflash Program ",
// (void *)NandFlashFormatForFAT, "NandFlash Format for FAT",
0,0
};
void Test_Nand(void)
{
U8 ch;
U32 gpacon;
Uart_Printf("Nand test\n");
gpacon = rGPACON;
rGPACON = (rGPACON &~(0x3f<<17)) | (0x3f<<17);
// GPA 22 21 20 19 18 17
// nFCE nRSTOUT nFRE nFWE ALE CLE
Uart_Printf("Select Nand flash type, Normal(1)/Advanced:K9F1G08(2) K9K8G08(3): ");
#if 1
ch=Uart_Getch();
#else
ch = '3';
#endif
Uart_Printf("%c\n\n", ch);
switch(ch) {
case '1':
Test_K9S1208(); // in Nand.c
break;
case '2':
Test_K9F1G08(); //in Nand.c
break;
case '3':
Test_K9K8G08(); //in K9K8G08.c
break;
default:
break;
}
rGPACON = gpacon;
}
void Test_K9S1208(void)
{
int i;
U8 ch;
Uart_Printf("\nK9S1208 Nand flash test start.\n");
NF8_Init();
while(1) {
PrintSubMessage();
Uart_Printf("\nSelect(-1 to exit): ");
i = Uart_GetIntNum();
if(i==-1) break;
if(i>=0 && (i<(sizeof(n8_func)/8)) )
( (void (*)(void)) (n8_func[i][0]) )(); // execute selected function.
}
}
void Test_K9F1G08(void)
{
int i;
U8 ch;
Uart_Printf("\nTest_K9F1G08 Nand flash test start.\n");
NF8_Init();
while(1) {
#if 0
PrintSubMessage();
Uart_Printf("\nSelect(-1 to exit): ");
i = Uart_GetIntNum();
#else
i = 9;
#endif
if(i==-1) break;
if(i>=0 && (i<(sizeof(n8_func)/8)) )
( (void (*)(void)) (n8_func[i][0]) )(); // execute selected function.
}
}
void Test_K9K8G08(void)
{
int i;
U8 ch;
Uart_Printf("\nTest_K9K8G08 Nand flash test start.\n");
NF8_Init();
while(1) {
#if 1
PrintSubMessage();
Uart_Printf("\nSelect(-1 to exit): ");
i = Uart_GetIntNum();
#else
i = 9;
#endif
if(i==-1) break;
if(i>=0 && (i<(sizeof(n8_func)/8)) )
( (void (*)(void)) (n8_func[i][0]) )(); // execute selected function.
}
}
U8 Read_Status(void)
{
// Read status
U8 ch;
int i;
NF_nFCE_L();
NF_CMD(0x70);
for(i=0; i<10; i++);
ch = NF_RDDATA();
NF_nFCE_H();
return ch;
}
void NF8_Print_Id(void) //NF16_Print_Id
{
U16 id;
U8 maker, device;
// NF8_Init();
id = NF8_CheckId();
device = (U8)id;
maker = (U8)(id>>8);
Uart_Printf("Maker:%x, Device:%x\n", maker, device);
}
void Test_NF8_Block_Erase(void)
{
U32 block=0;
#if ID_K9F1G08U0A
Uart_Printf("SMC(K9F1G08U0A) NAND Block erase\n");
#elif ID_K9S1208V0M
Uart_Printf("SMC(K9S1208V0M) NAND Block erase\n");
#elif ID_NAND == ID_K9K8G08U0A
Uart_Printf("SMC(ID_K9K8G08U0A) NAND Block erase\n");
#endif
if((Read_Status()&0x80)==0) {
Uart_Printf("Write protected.\n");
return;
}
Uart_Printf("Block # to erase: ");
block = Uart_GetIntNum();
// NF8_Init();
if(NF8_EraseBlock(block)==FAIL) return;
Uart_Printf("%d-block erased.\n", block);
}
void Test_NF8_Page_Read(void)
{
U32 block=0, page=0;
U32 i;
unsigned char * downPt;
downPt=(unsigned char *)_NONCACHE_STARTADDRESS;
#if ID_NAND == ID_K9F1G08U0A
Uart_Printf("SMC(K9F1G08U0A) NAND Page Read.\n");
Uart_Printf("Block # to read: ");
block = Uart_GetIntNum();
Uart_Printf("Page # to read: ");
page = Uart_GetIntNum();
if(NF8_ReadPage(block, page, (U8 *)downPt )==FAIL) {
Uart_Printf("Read error.\n");
} else {
Uart_Printf("Read OK.\n");
}
// Print data.
Uart_Printf("Read data(%d-block,%d-page)\n", block, page);
for(i=0; i<2048; i++) {
if((i%16)==0) Uart_Printf("\n%4x: ", i);
Uart_Printf("%02x ", *(U8 *)downPt++);
}
Uart_Printf("\n");
Uart_Printf("Spare:");
for(i=0; i<64; i++) {
Uart_Printf("%02x ", NF8_Spare_Data[i]);
}
#elif ID_NAND == ID_K9K8G08U0A
Uart_Printf("SMC(K9K8G08U0A) NAND Page Read.\n");
Uart_Printf("Block # to read: ");
block = Uart_GetIntNum();
Uart_Printf("Page # to read: ");
page = Uart_GetIntNum();
if(NF8_ReadPage(block, page, (U8 *)downPt )==FAIL) {
Uart_Printf("Read error.\n");
} else {
Uart_Printf("Read OK.\n");
}
// Print data.
Uart_Printf("Read data(%d-block,%d-page)\n", block, page);
for(i=0; i<2048; i++) {
if((i%16)==0) Uart_Printf("\n%4x: ", i);
Uart_Printf("%02x ", *(U8 *)downPt++);
}
Uart_Printf("\n");
Uart_Printf("Spare:");
for(i=0; i<64; i++) {
Uart_Printf("%02x ", NF8_Spare_Data[i]);
}
#elif ID_NAND == ID_K9S1208V0M
Uart_Printf("SMC(K9S1208V0M) NAND Page Read.\n");
Uart_Printf("Block # to read: ");
block = Uart_GetIntNum();
Uart_Printf("Page # to read: ");
page = Uart_GetIntNum();
if(NF8_ReadPage(block, page, (U8 *)downPt )==FAIL) {
Uart_Printf("Read error.\n");
} else {
Uart_Printf("Read OK.\n");
}
// Print data.
Uart_Printf("Read data(%d-block,%d-page)\n", block, page);
for(i=0; i<512; i++) {
if((i%16)==0) Uart_Printf("\n%4x: ", i);
Uart_Printf("%02x ", *(U8 *)downPt++);
}
Uart_Printf("\n");
Uart_Printf("Spare:");
for(i=0; i<16; i++) {
Uart_Printf("%02x ", NF8_Spare_Data[i]);
}
#endif
Uart_Printf("\n");
}
void Test_NF8_Page_Write(void)
{
U32 block=0, page=0;
int i, offset;
unsigned char * srcPt;
srcPt=(unsigned char *)0x31100000;
#if ID_NAND == ID_K9F1G08U0A
Uart_Printf("SMC(K9F1G08U0A) NAND Page Write.\n");
Uart_Printf("You must erase block before you write data!!! \n");
Uart_Printf("Block # to write: ");
block = Uart_GetIntNum();
Uart_Printf("Page # to write: ");
page = Uart_GetIntNum();
Uart_Printf("offset data(-1:random): ");
offset = 0;//Uart_GetIntNum();
// Init wdata.
for(i=0; i<2048; i++) {
if(offset==-1) *srcPt++ = i%0xff;
else *srcPt++ = i+offset;
}
srcPt=(unsigned char *)0x31100000;
Uart_Printf("Write data[%d block, %d page].\n", block, page);
if(NF8_WritePage(block, page, srcPt)==FAIL) {
Uart_Printf("Write Error.\n");
} else {
Uart_Printf("Write OK.\n");
}
Uart_Printf("Write data is");
for(i=0; i<2048; i++) {
if((i%16)==0) Uart_Printf("\n%4x: ", i);
Uart_Printf("%02x ", *srcPt++);
}
Uart_Printf("\n");
Uart_Printf("Spare:");
for(i=0; i<64; i++) {
Uart_Printf("%02x ", NF8_Spare_Data[i]);
}
#elif ID_NAND == ID_K9K8G08U0A
Uart_Printf("SMC(K9K8G08U0A) NAND Page Write.\n");
Uart_Printf("You must erase block before you write data!!! \n");
Uart_Printf("Block # to write: ");
block = Uart_GetIntNum();
Uart_Printf("Page # to write: ");
page = Uart_GetIntNum();
Uart_Printf("offset data(-1:random): ");
offset = 0;//Uart_GetIntNum();
// Init wdata.
for(i=0; i<2048; i++) {
if(offset==-1) *srcPt++ = i%0xff;
else *srcPt++ = i+offset;
}
srcPt=(unsigned char *)0x31100000;
Uart_Printf("Write data[%d block, %d page].\n", block, page);
if(NF8_WritePage(block, page, srcPt)==FAIL) {
Uart_Printf("Write Error.\n");
} else {
Uart_Printf("Write OK.\n");
}
Uart_Printf("Write data is");
for(i=0; i<2048; i++) {
if((i%16)==0) Uart_Printf("\n%4x: ", i);
Uart_Printf("%02x ", *srcPt++);
}
Uart_Printf("\n");
Uart_Printf("Spare:");
for(i=0; i<64; i++) {
Uart_Printf("%02x ", NF8_Spare_Data[i]);
}
#elif ID_NAND == ID_K9S1208V0M
Uart_Printf("SMC(K9S1208V0M) NAND Page Write.\n");
Uart_Printf("You must erase block before you write data!!! \n");
Uart_Printf("Block # to write: ");
block = Uart_GetIntNum();
Uart_Printf("Page # to write: ");
page = Uart_GetIntNum();
Uart_Printf("offset data(-1:random): ");
offset = 0;//Uart_GetIntNum();
// Init wdata.
for(i=0; i<512; i++) {
if(offset==-1) *srcPt++ = i%0xff;
else *srcPt++ = i+offset;
}
srcPt=(unsigned char *)0x31100000;
Uart_Printf("Write data[%d block, %d page].\n", block, page);
if(NF8_WritePage(block, page, srcPt)==FAIL) {
Uart_Printf("Write Error.\n");
} else {
Uart_Printf("Write OK.\n");
}
Uart_Printf("Write data is");
for(i=0; i<512; i++) {
if((i%16)==0) Uart_Printf("\n%4x: ", i);
Uart_Printf("%02x ", *srcPt++);
}
Uart_Printf("\n");
Uart_Printf("Spare:");
for(i=0; i<16; i++) {
Uart_Printf("%02x ", NF8_Spare_Data[i]);
}
#endif
Uart_Printf("\n\n");
}
void Test_NF8_Rw(void)
{
U32 block=0, page=0;
U32 i, status=FAIL, error, offset;
unsigned char *srcPt, *dstPt;
srcPt=(unsigned char *)0x31100000;
dstPt=(unsigned char *)0x31200000;
Uart_Printf("NAND Flash R/W test.\n");
Uart_Printf("Block number: ");
block = Uart_GetIntNum();
Uart_Printf("Page nember: ");
page = Uart_GetIntNum();
Uart_Printf("offset data(-1:random): ");
offset = Uart_GetIntNum();
// Init R/W data.
for(i=0; i<2048; i++) *dstPt++=0x0;
for(i =0; i<36; i++){
*srcPt++ =0;// vectors[i];
}
for(i=36; i<2048; i++) {
if(offset==-1) *srcPt++ = i%0xff;
else *srcPt++ =0;// i+offset;
}
srcPt=(unsigned char *)0x31100000;
dstPt=(unsigned char *)0x31200000;
// Block erase
Uart_Printf("%d block erase.\n", block);
if(NF8_EraseBlock(block)==FAIL) return;
Uart_Printf("Read data.\n");
if(NF8_ReadPage(block, page, dstPt)==FAIL) return;
Uart_Printf("Write data[%d block, %d page].\n", block, page);
if(NF8_WritePage(block, page, srcPt)==FAIL) return;
Uart_Printf("Read data.\n");
if(NF8_ReadPage(block, page, dstPt)==FAIL) return;
Uart_Printf("Checking data.\n");
for(error=0, i=0; i<2048; i++) {
if(*srcPt++!=*dstPt++) {
Uart_Printf("Error:%d[W:%x,R:%x]\n", i, *srcPt, *dstPt);
error++;
}
}
if(error!=0)
Uart_Printf("Fail to R/W test(%d).\n", error);
else
Uart_Printf("R/W test OK.\n");
}
void NandFlashProgram(U32 block, U32 filesize)
{
// unsigned long interrupt_reservoir;
int i;
int programError=0;
U8 *srcPt,*saveSrcPt;
U32 blockIndex;
U32 no_block, no_page, no_byte;
Uart_Printf("\n[SMC NAND Flash writing program]\n");
Uart_Printf("The program buffer: 0x30200000~0x32ffffff\n");
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -