⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 elmt_shell_4n.c

📁 有限元程序
💻 C
📖 第 1 页 / 共 5 页
字号:
         }         A = sqrt(A_2);         R = p->LC_ptr->R[kk-1];         eff_pl_strain = p->effect_pl_strain[kk-1];       /* Step 2: comparision                        */        if(A <= R) { /* ELASTIC DEFORMATION */          for(i = 1; i <= dof; i++)              p->stress->uMatrix.daa[i-1][kk-1] = stress[i-1][0];           SaveRespondBuffer(p, kk);#ifdef DEBUG1    printf(" +++++++ ELASTIC DEFORMATION A = %lf R = %lf \n", A, R);    printf(" at elmt_no = %d, integ_pt = %d\n", p->elmt_no, kk);#endif        }        else {       /* PLASTIC DEFORMATION */               /* Step 3 Estimate number of sub-incrementations needed     */          if( ABS(p->LC_ptr->beta) < 1E-10){ /* Only for beta = 0 kinematic hardening case */       /* Step 3.1 Estimate the effective plastic strain increment */              temp = sqrt(3.0/2.0)*(A-R)/(p->LC_ptr->H[kk-1]+3.0*G);       /* Step 3.2 Estimate the back stress increment              */                         /* Estimate H' */              if(!strcmp(p->material_name, "ELASTIC_PERFECTLY_PLASTIC")) {                  H = 0.0;              }else {                  if(!strcmp(p->LC_ptr->name, "Ramberg-Osgood")) {                      effect_stress = A*sqrt(3.0/2.0);                      Load_Curve(p, &H, effect_stress, E,fy);                  }                  if(!strcmp(p->LC_ptr->name, "Bi-Linear"))                       H = p->LC_ptr->H[kk-1];             }          /* calculate the effective plastic strain incremental */             temp1 = sqrt(2.0/3.0)*(H + 3.0*G);             temp  = A/temp1 - R/temp1;            /* eff_pl_strain_incr */       /* Step 3.3: Compute Lambda  and pl_strain_incr   */       /*         Lambda = sqrt(3/2)*eff_pl_strain_incr  */       /* plastic strain incr is now stored in strain_incr */             Lambda = sqrt(3.0/2.0)*temp;             for(i = 1; i <= dof; i++)                  strain_incr[i-1][0] = Lambda*stress_dev[i-1][0]/A;          /* Step 3.4:  calculate back stress increment  */          /* beta = 0 for kinematic hardening */          /* beta = 1 for isotropic hardening */              for(i = 1; i <= dof; i++) {                  back_stress_incr[i-1][0] = H*strain_incr[i-1][0]*2.0/3.0;              }          }          mean_stress = (stress_incr[0][0] - back_stress_incr[0][0]                        +stress_incr[1][0] - back_stress_incr[1][0])/3.0;          temp   = 0.0;          for(i = 1; i <= dof; i++) {              if(i <= 2)                 stress_dev[i-1][0] = stress_incr[i-1][0] - mean_stress - back_stress_incr[i-1][0];              else                 stress_dev[i-1][0] = stress_incr[i-1][0] - back_stress_incr[i-1][0];              temp += stress_dev[i-1][0]*stress_dev[i-1][0];          }          temp = sqrt(temp);          iNo_iter_step = (int) (2*temp/R/Beta1) + 1 ;#ifdef DEBUG1    printf(" ******Plastic DEFORMATION A  = %lf, R = %lf \n", A, R);    printf(" ******Plastic DEFORMATION dA = %lf, R = %lf \n", temp, R);    printf(" at elmt_no = %d, integ_pt = %d\n", p->elmt_no, kk);    printf(" No of sub-Incremental steps = %d \n",iNo_iter_step);#endif#undef DEBUG1          /* Step 4 Start sub-incrementation  */         /* copy the plastic strain before sub-incrementation */         eff_pl_strainTemp = eff_pl_strain;         for(i = 1; i <= dof; i++)              strain_pl[i-1][0] = p->strain_pl->uMatrix.daa[i-1][kk-1];         switch(iNo_iter_step) {             case 1:                ii = 1;               Plastic_Deform(p, &H, &R, &eff_pl_strain, stress, stress_dev,                              strain_incr, E, fy, G, A, iNo_iter_step, dof, ii, kk);               SaveRespondBuffer(p, kk);#ifdef DEBUG   printf(" A= %lf R = %lf H = %lf eff_pl_strain = %lf\n", A, R, H, eff_pl_strain);#endif             break;             default:                for(i = 1; i <= p->dof_per_node; i++) {                   for(j = 1; j <= p->nodes_per_elmt; j++) {                       k = p->dof_per_node*(j-1)+i;                       displ_incr[k-1][0]                        = p->displ_incr->uMatrix.daa[i-1][j-1]/((double) iNo_iter_step);                   }               }               /* Calculate stress increment */               strain_incr = dMatrixMultRep(strain_incr,B_matrix, dof,                                             size, displ_incr, size, 1);               stress_incr = dMatrixMultRep(stress_incr, m1, dof, dof,                                            strain_incr, dof, 1);               for(ii = 1; ii <= iNo_iter_step; ii++) {                   /* Trial stress */                   if(ii == 1) {                      for(i = 1; i <= dof; i++)                           stress[i-1][0] = stress_incr[i-1][0] +                                            p->stress->uMatrix.daa[i-1][kk-1];                   }                   else                      for(i = 1; i <= dof; i++)                           stress[i-1][0] += stress_incr[i-1][0];                   mean_stress = (stress[0][0] - p->LC_ptr->back_stress[0][kk-1]                                 +stress[1][0] - p->LC_ptr->back_stress[1][kk-1])/3.0;                   A_2 = 0.0;                   for(i = 1; i <= dof; i++) {                       if(i <= 2)                          stress_dev[i-1][0] = stress[i-1][0] - mean_stress                                             - p->LC_ptr->back_stress[i-1][kk-1];                       else                          stress_dev[i-1][0] = stress[i-1][0]                                             - p->LC_ptr->back_stress[i-1][kk-1];                       A_2 += stress_dev[i-1][0]*stress_dev[i-1][0];                   }                   A = sqrt(A_2);                   if(A <= R) { /* ELASTIC DEFORMATION */                      if(i == iNo_iter_step){                         for(i = 1; i <= dof; i++)                             p->stress->uMatrix.daa[i-1][kk-1] = stress[i-1][0];                      }                   /* go to next sub incremental iteration */                   }else {   /* PLASTIC DEFORMATION */                      Plastic_Deform(p, &H, &R, &eff_pl_strain, stress,stress_dev,                                     strain_incr, E, fy, G, A, iNo_iter_step, dof, ii, kk);                   }               } /* end of sub-incremental iteration */             break;          } /* end of switch for sub incrementation */                    p->LC_ptr->R[kk-1] = R;          p->LC_ptr->H[kk-1] = H;          p->effect_pl_strain[kk-1]   = eff_pl_strain;          p->eff_pl_strain_incr[kk-1] = eff_pl_strain - eff_pl_strainTemp;          for(i = 1; i <= dof; i++) {              p->strain_pl_incr->uMatrix.daa[i-1][kk-1]              = p->strain_pl->uMatrix.daa[i-1][kk-1] - strain_pl[i-1][0];          }          SaveRespondBuffer(p, kk);        }       break;       default:         printf(" In Stress_Update(): elmt_no \n", p->elmt_no);         printf(" elmt_state = 0 : Elastic_deformation \n");         printf(" elmt_state = 1 : plastic_deformation \n");         printf(" elmt_state = %d: p->elmt_state \n");         FatalError(" Unknown elmt state ",(char *)NULL);       break;     }  }  /* ASSIGN UNITS TO p ARRAY */     if(CheckUnits() == ON) {         switch(CheckUnitsType()) {           case SI:             dimen = DefaultUnits("Pa");           break;           case US:             dimen = DefaultUnits("psi");           break;       }       for(i = 1; i <= dof; i++)           p->stress->spRowUnits[i-1] = *DefaultUnits("psi");       free((char *) dimen->units_name);       free((char *) dimen);   }   MatrixFreeIndirectDouble(m1, dof);   MatrixFreeIndirectDouble(strain_incr, dof);   MatrixFreeIndirectDouble(stress, dof);    MatrixFreeIndirectDouble(stress_dev,dof);   MatrixFreeIndirectDouble(stress_incr,dof);   MatrixFreeIndirectDouble(back_stress_incr,dof);#ifdef DEBUG      dMatrixPrint("p->stress in Stress_Update() leaving ", p->stress->uMatrix.daa, p->dof_per_node, 12);     printf(" Leaving Stress_Update() \n");#endif}voidPlastic_Deform(p, H, R, eff_pl_strain, stress, stress_dev,               strain_incr, E, fy, G, A, iNo_iter_step, dof, ii, kk)ARRAY                              *p;double            *H, *R, fy, E, G, A;double         **stress, **stress_dev;double                  **strain_incr;double                 *eff_pl_strain;int        iNo_iter_step, dof, ii, kk;{double                           temp;double                         Lambda;double             eff_pl_strain_incr;double           temp1, effect_stress;int                           i, j, k;#ifdef DEBUG    printf(" enter Plastic_Deform() \n");#endif  /* Step 5 Compute effective incremental */  /*        plastic strain within each    */  /*        sub-incrementation            */                /* Estimate H' */  if(!strcmp(p->material_name, "ELASTIC_PERFECTLY_PLASTIC")) {     *H = 0.0;  }else {     if(!strcmp(p->LC_ptr->name, "Ramberg-Osgood")) {         effect_stress = A*sqrt(3.0/2.0);#ifdef DEBUG    printf(" before H = %le \n", *H);    printf(" fy = %lf \n", fy);    printf(" E  = %lf \n", E);    printf(" effect_stress= %le \n", effect_stress);#endif         Load_Curve(p, H, effect_stress, E,fy);     }     if(!strcmp(p->LC_ptr->name, "Bi-Linear"))          *H = p->LC_ptr->H[kk-1];  }  /* calculate the effective plastic strain incremental */  temp1 = sqrt(2.0/3.0)*(*H + 3.0*G);  eff_pl_strain_incr  = A/temp1 - (*R)/temp1; *eff_pl_strain      += eff_pl_strain_incr;#ifdef DEBUG3     printf("========== In Plastic_Deform() : H = %le\n", *H);     printf("========== In Plastic_Deform() : eff_pl_strain_incr = %le\n", eff_pl_strain_incr);#endif  /* Step 6: Compute Lambda  and pl_strain_incr       */  /*         Lambda = sqrt(3/2)*eff_pl_strain_incr/A  */  /* plastic strain incr is now stored in strain_incr */  Lambda = sqrt(3.0/2.0)*eff_pl_strain_incr;  for(i = 1; i <= dof; i++) {      strain_incr[i-1][0] = Lambda*stress_dev[i-1][0]/A;      p->strain_pl->uMatrix.daa[i-1][kk-1] += strain_incr[i-1][0];  }  /* Step 7:  Update back stress and Stress */  /* beta = 0 for kinematic hardening */  /* beta = 1 for isotropic hardening */  if( ABS(p->LC_ptr->beta) < 1E-10){      for(i = 1; i <= dof; i++) {          temp = (*H)*strain_incr[i-1][0]*2.0/3.0;          stress[i-1][0] = stress[i-1][0]-2.0*G*strain_incr[i-1][0] + temp;          p->LC_ptr->back_stress[i-1][kk-1] += temp;      }  }else {  /* Step 8:  Update stress */  for(i = 1; i <= dof; i++)       stress[i-1][0] = stress[i-1][0]-2.0*G*strain_incr[i-1][0]; }  if(ii == iNo_iter_step)      for(i = 1; i <= dof; i++)       p->stress->uMatrix.daa[i-1][kk-1] = stress[i-1][0];  /* Step 9:  Update R */#ifdef DEBUG    printf(" before R = %lf \n", *R);    printf(" H       = %le \n",  *H);    printf(" beta    = %lf \n", p->LC_ptr->beta);    printf(" eff_pl_strain_incr = %le \n", eff_pl_strain_incr);#endif    if( ABS(p->LC_ptr->beta -1.0) < 1E-10)       (*R) += sqrt(2.0/3.0)*(*H)*eff_pl_strain_incr;#ifdef DEBUG    printf(" after R = %lf \n", *R);#endif#ifdef DEBUG    printf(" Leaving Plastic_Deform() \n");#endif}double **B_MATRIX_4Node(B_matrix, p, shp, z_coord)double       **B_matrix;ARRAY                *p;double            **shp;double          z_coord;{int       i,j, k, ii, n;double                h;/* ======================================================= *//* B_matrix : strain = Transpose(B_matrix)* nodal_displ.   *//* ======================================================= */#ifdef DEBUG      printf(" enter B_MATRIX_4Node() \n");#endif      /* B_matrix = [B', B"] */      for(j = 1; j <= p->nodes_per_elmt; j++) {          k = p->dof_per_node*(j-1)-1;      /* ------------------------------------------ */      /* Bi' mattrix is independent of z-coordinate */      /* Bi' mattrix is estimated first here        */      /* Bi'  = []5x3                               */      /* ------------------------------------------ */          B_matrix[0][k+1] = shp[0][j-1];           B_matrix[0][k+2] = B_matrix[0][k+3] = 0.0;          B_matrix[1][k+2] = shp[1][j-1];           B_matrix[1][k+1] = B_matrix[1][k+3] = 0.0;          B_matrix[2][k+1] = shp[1][j-1];           B_matrix[2][k+2] = shp[0][j-1];           B_matrix[2][k+3] = 0.0;          B_matrix[3][k+3] = shp[1][j-1];           B_matrix[3][k+1] = B_matrix[3][k+2] = 0.0;          B_matrix[4][k+3] = shp[0][j-1];           B_matrix[4][k+1] = B_

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -