⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 elmt_shell_4n.c

📁 有限元程序
💻 C
📖 第 1 页 / 共 5 页
字号:
	     break;        case MASS_MATRIX:  /* form mass matrix */#ifdef DEBUG       printf("*** In elmt_shell_4nodes_implicit() : start case MASS\n");       printf("                : Density = %14.4e\n", density.value);       printf("                : shell_thickness = %8.2f\n", h);       printf("                : Jac             = %8.2f\n", Jac);#endif   /*====================================================*/   /*  CALCULATING MASS MATRIX IN CO_COORDINATE SYSTEM   */    /*====================================================*/      Shell_4Node_Mass(p, p->stiff, co_coord, density.value, h);#ifdef DEBUG       printf("*** In elmt_shell() : end case MASS\n");#endif             break;        default:             break;    }    MatrixFreeIndirectDouble(co_coord, p->no_dimen);    MatrixFreeIndirectDouble(Direction_Matrix,6);#ifdef DEBUG       printf("*** leaving elmt_shell() \n");#endif    return(p);}/* Print SHELL_4N Element Properties */#ifdef __STDC__void print_property_shell_4n(EFRAME *frp, int i)#elsevoid print_property_shell_4n(frp, i)EFRAME    *frp;int          i;                 /* elmt_attr_no */#endif{int     UNITS_SWITCH;ELEMENT_ATTR    *eap;#ifdef DEBUG       printf("*** Enter print_property_shell_4n()\n");#endif     UNITS_SWITCH = CheckUnits();     eap = &frp->eattr[i-1];     if( PRINT_MAP_DOF == ON ) {        if(frp->no_dof == 3 || frp->no_dof == 2) {            printf("             ");           printf("         : gdof [0] = %4d : gdof[1] = %4d : gdof[2] = %4d\n",                           eap->map_ldof_to_gdof[0],                           eap->map_ldof_to_gdof[1],                           eap->map_ldof_to_gdof[2]);        }        if(frp->no_dof == 6) { /* 3d analysis */           printf("             ");           printf("         : dof-mapping : gdof[0] = %4d : gdof[1] = %4d : gdof[2] = %4d\n",                           eap->map_ldof_to_gdof[0],                           eap->map_ldof_to_gdof[1],                           eap->map_ldof_to_gdof[2]);           printf("             ");           printf("                         gdof[3] = %4d : gdof[4] = %4d : gdof[5] = %4d\n",                           eap->map_ldof_to_gdof[3],                           eap->map_ldof_to_gdof[4],                           eap->map_ldof_to_gdof[5]);        }      }     switch(UNITS_SWITCH) {       case ON:        UnitsSimplify( eap->work_material[0].dimen );        UnitsSimplify( eap->work_material[2].dimen );        UnitsSimplify( eap->work_material[5].dimen );        UnitsSimplify( eap->work_section[2].dimen );        UnitsSimplify( eap->work_section[10].dimen );        if( eap->work_material[0].dimen->units_name != NULL ) {           printf("             ");           printf("         : Young's Modulus =  E = %16.3e %s\n",                           eap->work_material[0].value/eap->work_material[0].dimen->scale_factor,                           eap->work_material[0].dimen->units_name);        }        if( eap->work_material[4].value != 0.0 ) {           printf("             ");           printf("         : Poisson's ratio = nu = %16.3e   \n", eap->work_material[4].value);        }        if( eap->work_material[2].dimen->units_name != NULL ) {           printf("             ");           printf("         : Yielding Stress = fy = %16.3e %s\n",                           eap->work_material[2].value/eap->work_material[2].dimen->scale_factor,                           eap->work_material[2].dimen->units_name);        }	if( eap->work_material[5].dimen->units_name != NULL ) {          printf("             ");          printf("         : Density         = %16.3e %s\n",                           eap->work_material[5].value/eap->work_material[5].dimen->scale_factor,                           eap->work_material[5].dimen->units_name);	}	if( eap->work_section[2].dimen->units_name != NULL ) {          printf("             ");          printf("         : Inertia Izz     = %16.3e %s\n",                           eap->work_section[2].value/eap->work_section[2].dimen->scale_factor,                           eap->work_section[2].dimen->units_name);	}	if( eap->work_section[10].dimen->units_name != NULL ) {          printf("             ");          printf("         : Area            = %16.3e %s\n",                           eap->work_section[10].value/eap->work_section[10].dimen->scale_factor,                           eap->work_section[10].dimen->units_name);	}       break;       case OFF:         printf("             ");         printf("         : Young's Modulus =  E = %16.3e\n",                            eap->work_material[0].value);         printf("             ");         printf("         : Yielding Stress = fy = %16.3e\n",                            eap->work_material[2].value);         printf("             ");         printf("         : Poisson's ratio = nu = %16.3e   \n", eap->work_material[4].value);         printf("             ");         printf("         : Density         = %16.3e\n",                            eap->work_material[5].value);         printf("             ");         printf("         : Inertia Izz     = %16.3e\n",                            eap->work_section[2].value);         printf("             ");         printf("         : Area            = %16.3e\n",                            eap->work_section[10].value);        break;        default:        break;     }#ifdef DEBUG       printf("*** Leave print_property_shell_4n()\n");#endif}/* ============================================*//* Equivalent Load due to distributed pressure *//* for shell Belytschko element                *//* in local coordinate                         *//* ============================================*/ARRAY *sld04(p,task)ARRAY *p;int task;{ELEMENT_LOADS               *elsptr;ELOAD_LIB                      *elp;double                  *nodal_load;double      Jac, x31, y31, x42, y42; double px,py,pz, mx,my,mz, bx,by,bz;int  i,j,k, ii, jj, kk, n, n1,n2,n3;#ifdef DEBUG      printf("**** enter sld04(): \n");#endif    /* Initialize total load */    nodal_load = dVectorAlloc(p->size_of_stiff);    for(i =1; i <= p->size_of_stiff ;i++)        nodal_load[i-1] = 0.0;#ifdef DEBUG      printf(" **** In sld04(): begin switch()  \n");#endif    switch(task){       case PRESSLD:#ifdef DEBUG      printf(" **** In sld04(): case PRESSLD\n");#endif       /* ==========================================*/       /* For distrbuted surface loading:           */       /* PRESSURE OR TRACTION                      */       /* nodal equivalent force is calculated by : */       /* force = integral N^T*traction/pressure dA */       /* ==========================================*/              /*================================================*/       /* use one-point integration rule in surface area */       /* Ni = 1/4.0 [N] = 1/4 [I, I, I, I]              */       /* [I] = 5x5 unit_matrix                          */       /* Let traction = [p]5x1                          */       /* Integ [N]^t*traction dA  = (1/4)*[p]*Jac*4.0   */       /*                                  [p]           */       /*                                  [p]           */       /*                                  [p]           */       /*                                  [p]           */       /*================================================*/         elsptr  =  p->elmt_load_ptr;         for (j=1; j<= elsptr->no_loads_faces;j++) {              elp = &elsptr->elib_ptr[j-1];                     x31 =  p->coord[0][2].value - p->coord[0][0].value;              y31 =  p->coord[1][2].value - p->coord[1][0].value;              x42 =  p->coord[0][3].value - p->coord[0][1].value;              y42 =  p->coord[1][3].value - p->coord[1][1].value;              Jac = 0.5*(x31*y42-x42*y31);               for(i = 1; i <= p->size_of_stiff; i++) {                  n = i/p->dof_per_node;                  k = i - n*p->dof_per_node;                  nodal_load[i-1] = 0.25*elp->traction[k-1].value*4.0*Jac;               }         }       break;    default:       break;    }    for(i = 1; i <= p->size_of_stiff; i++) {       p->equiv_nodal_load->uMatrix.daa[i-1][0] = nodal_load[i-1];    }        free(nodal_load);#ifdef DEBUG      printf("**** leaving sld04(): \n");#endif    return(p);}/* ============================*//* Material matrix             *//* ============================*/double **MATER_MAT_SHELL(m1, E, nu)double  **m1;double E, nu;{double           temp;double       kk = 1.2;           #ifdef DEBUG     printf(" enter MATER_MAT_SHELL() \n");     printf(" E = %lf , nu = %lf \n", E, nu);#endif    /* Stress : stress_x, stress_y,  stress_xy,  stress_yz,  stress_zx  */    /* Strain : strain_x, strain_y, 2strain_xy, 2strain_yz, 2strain_zx  */        temp =  E/(1-nu*nu);    m1[0][0]= m1[1][1] = temp;    m1[0][1]= m1[1][0] = nu*temp;    m1[2][2]= E/2.0/(1.0+nu);    m1[3][3] = m1[4][4] = E/2.0/(1.0+nu)/kk;    m1[0][2] = m1[2][0] = m1[1][2] = m1[2][1] = 0.0;    m1[3][0] = m1[3][1] = m1[3][2] = m1[3][4] = 0.0;    m1[4][0] = m1[4][1] = m1[4][2] = m1[4][3] = 0.0;#ifdef DEBUG     dMatrixPrint("m1", m1, 5, 5);     printf("\n leaving MATER_MAT_SHELL() \n");#endif  return (m1);}void MATER_SHELL_UPDATE(p, co_coord, E, nu, integ_pt)ARRAY                              *p;double                     **co_coord;double                          E, nu;int                          integ_pt; /* integration point */{double             **m1, **mater_temp;double **stress_dev, **Norm_Transpose;double         A_2, mean_stress, R, A;double                           temp;int            i, j, k, ii, jj, kk, n;int                      dof, size, G;#ifdef DEBUG    printf(" enter MATER_SHELL_UPDATE() \n");#endif  /* Given i -state displ, stress, [C] and strain */  /* calculate i+1 state displ, stress, these i+1 */  /* state stress can be used for i+1 state [Cep] */  /* matrix                                       */#ifdef DEBUG    printf(" In MATER_SHELL_UPDATE(): calculating MATER_MAT_SHELL() \n");#endif      dof             = p->dof_per_node;      size            = p->size_of_stiff;      ii              = integ_pt;      G               = E/2.0/(1.0+nu);#ifdef DEBUG    printf(" In MATER_SHELL_UPDATE(): update p->material = %s \n", p->material_name);    printf(" In MATER_SHELL_UPDATE(): integ_pts          = %d \n", integ_pt);    printf(" In MATER_SHELL_UPDATE(): dof                = %d \n", dof);    printf(" In MATER_SHELL_UPDATE(): deformation state  = %d \n", p->elmt_state);#endif  /* Elastic material */  if(p->material_name != NULL && !strcmp(p->material_name, "ELASTIC")) {     p->mater_matrix->uMatrix.daa      = MATER_MAT_SHELL(p->mater_matrix->uMatrix.daa,E, nu);   }  /* Elastic Perfectly Plastic Materials */  if(p->material_name != NULL &&     !strcmp(p->material_name,"ELASTIC_PERFECTLY_PLASTIC")) {     m1              = MatrixAllocIndirectDouble(p->dof_per_node, p->dof_per_node);     stress_dev      = MatrixAllocIndirectDouble(dof, 1);     Norm_Transpose  = MatrixAllocIndirectDouble(1,dof);     mater_temp      = MatrixAllocIndirectDouble(dof, dof);     /* Elastic Deformation */     switch(p->elmt_state) {       /* Elastic deformation */       case 0:          p->mater_matrix->uMatrix.daa          = MATER_MAT_SHELL(p->mater_matrix->uMatrix.daa,E, nu);       break;       case 1:       /* plastic deformation */       /* Step 1: Calculate the spherical stress and */       /*         deviatric stress of trial stress   */       /*         also the radiaus square A_2        */            mean_stress = (p->stress->uMatrix.daa[0][ii-1] - p->LC_ptr->back_stress[0][ii-1]                          +p->stress->uMatrix.daa[1][ii-1] - p->LC_ptr->back_stress[1][ii-1])/3.0;            A_2 = 0.0;            for(i = 1; i <= dof; i++) {               if(i <= 2)                            stress_dev[i-1][0] = p->stress->uMatrix.daa[i-1][ii-1] - mean_stress - p->LC_ptr->back_stress[i-1][ii-1];               else

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -