⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 elmt_frame3d.c

📁 有限元程序
💻 C
📖 第 1 页 / 共 4 页
字号:
     if( PRINT_MAP_DOF == ON ) {        if(frp->no_dof == 3 || frp->no_dof == 2) {            printf("             ");           printf("         : gdof [0] = %4d : gdof[1] = %4d : gdof[2] = %4d\n",                           eap->map_ldof_to_gdof[0],                           eap->map_ldof_to_gdof[1],                           eap->map_ldof_to_gdof[2]);        }        if(frp->no_dof == 6) { /* 3d analysis */           printf("             ");           printf("         : dof-mapping : gdof[0] = %4d : gdof[1] = %4d : gdof[2] = %4d\n",                           eap->map_ldof_to_gdof[0],                           eap->map_ldof_to_gdof[1],                           eap->map_ldof_to_gdof[2]);           printf("             ");           printf("                         gdof[3] = %4d : gdof[4] = %4d : gdof[5] = %4d\n",                           eap->map_ldof_to_gdof[3],                           eap->map_ldof_to_gdof[4],                           eap->map_ldof_to_gdof[5]);        }      }     switch(UNITS_SWITCH) {       case ON:        UnitsSimplify( eap->work_material[0].dimen );        UnitsSimplify( eap->work_material[2].dimen );        UnitsSimplify( eap->work_material[5].dimen );        UnitsSimplify( eap->work_section[1].dimen );        UnitsSimplify( eap->work_section[2].dimen );        UnitsSimplify( eap->work_section[12].dimen );        UnitsSimplify( eap->work_section[10].dimen );        if( eap->work_material[0].dimen->units_name != NULL ) {           printf("             ");           printf("         : Young's Modulus =  E = %16.3e %s\n",                           eap->work_material[0].value/eap->work_material[0].dimen->scale_factor,                           eap->work_material[0].dimen->units_name);        }        if( eap->work_material[4].value != 0.0 ) {           printf("             ");           printf("         : Poisson's ratio = nu = %16.3e   \n", eap->work_material[4].value);        }        if( eap->work_material[2].dimen->units_name != NULL ) {           printf("             ");           printf("         : Yielding Stress = fy = %16.3e %s\n",                           eap->work_material[2].value/eap->work_material[2].dimen->scale_factor,                           eap->work_material[2].dimen->units_name);        }	if( eap->work_material[5].dimen->units_name != NULL ) {          printf("             ");          printf("         : Density         = %16.3e %s\n",                           eap->work_material[5].value/eap->work_material[5].dimen->scale_factor,                           eap->work_material[5].dimen->units_name);	}	if( eap->work_section[1].dimen->units_name != NULL ) {          printf("             ");          printf("         : Inertia Iyy     = %16.3e %s\n",                           eap->work_section[1].value/eap->work_section[1].dimen->scale_factor,                           eap->work_section[1].dimen->units_name);	}	if( eap->work_section[2].dimen->units_name != NULL ) {          printf("             ");          printf("         : Inertia Izz     = %16.3e %s\n",                           eap->work_section[2].value/eap->work_section[2].dimen->scale_factor,                           eap->work_section[2].dimen->units_name);	}	if( eap->work_section[12].dimen->units_name != NULL ) {          printf("             ");          printf("         : Torsional Constant J = %16.3e %s\n",                           eap->work_section[12].value/eap->work_section[12].dimen->scale_factor,                           eap->work_section[12].dimen->units_name);	}	if( eap->work_section[10].dimen->units_name != NULL ) {          printf("             ");          printf("         : Area            = %16.3e %s\n",                           eap->work_section[10].value/eap->work_section[10].dimen->scale_factor,                           eap->work_section[10].dimen->units_name);	}       break;       case OFF:        if( eap->work_material[0].value != 0.0 ) {           printf("             ");           printf("         : Young's Modulus =  E = %16.3e\n",                            eap->work_material[0].value);        }        if( eap->work_material[2].value != 0.0 ) {           printf("             ");           printf("         : Yielding Stress = fy = %16.3e\n",                            eap->work_material[2].value);        }        if( eap->work_material[4].value != 0.0 ) {           printf("             ");           printf("         : Poisson's ratio = nu = %16.3e   \n", eap->work_material[4].value);        }        if( eap->work_material[0].value != 0.0 ) {           printf("             ");           printf("         : Density         = %16.3e\n",                            eap->work_material[5].value);        }        if( eap->work_section[1].value != 0.0 ) {           printf("             ");           printf("         : Inertia Iyy     = %16.3e\n",                            eap->work_section[1].value);        }        if( eap->work_section[2].value != 0.0 ) {           printf("             ");           printf("         : Inertia Izz     = %16.3e\n",                            eap->work_section[2].value);        }        if( eap->work_section[12].value != 0.0 ) {           printf("             ");           printf("         : Torsional Constant J = %16.3e\n",                            eap->work_section[12].value);        }        if( eap->work_section[10].value != 0.0 ) {           printf("             ");           printf("         : Area            = %16.3e\n",                            eap->work_section[10].value);        }        break;        default:        break;     }}/* ================================================== *//* Equivalent Loading Procedure for 3 D frame element *//* ================================================== */#ifdef __STDC__ARRAY *sld05(ARRAY *p, int task)#elseARRAY *sld05(p,task)ARRAY *p;int   task;#endif{ELEMENT_LOADS   *elsptr;ELOAD_LIB          *elp;double  P, a ,b ;double  L, load[15];double  px,py,pz, mx,my,mz, bx,by,bz, ze,ze2,ze3;double  X1,Y1,Z1,MX1,MY1,MZ1,        X2,Y2,Z2,MX2,MY2,MZ2,         MCZ, MCY, MCZT, MCYT;double  f1,f2,f3,f4,f5,f6,        df1x, df3x, df5x,df2x, df6x;double  **rmat, **rt;int     *da;int     inc,i,j;/* printf(">>>>In sld05 : 3d elmt    \n");  */       /* Initialize total load */       for(inc=1; inc <= 12; inc++)          load[inc-1] = 0.0;       MCZT = 0.0;       MCYT = 0.0;    switch(task){        case PRESSLD: case STRESS:             L = p->length.value;  elsptr  =  p->elmt_load_ptr;             for(j=1; j<= elsptr->no_loads_faces; j++) {                 elp  =  &elsptr->elib_ptr[j-1];                 P =  elp->P.value;                 a =  elp->a.value;                 b =  elp->b.value;                 /* Pt loads */                 px =  elp->px.value;                 py =  elp->py.value;                 pz =  elp->pz.value;                 /* moments */                 mx =  elp->mx.value;                 my =  elp->my.value;                 mz =  elp->mz.value;                 /* distributed loading */                 bx =  elp->bx.value;                 by =  elp->by.value;                 bz =  elp->bz.value;                 if(a > L) /* error message */                    printf(">>ERROR in sld; Elmt Load dist. 'a' > Elmt Length; El_no= %d\n",p->elmt_no);                   if (elp->type == -1) { /* Distributed loading Condition */                     inc = 0;                 /* set default values */                 if(b == 0.0) b = L; /* dist loading acts on entire length */                 /* first calc f(b) */                    ze = b/L;    SHP_START:                    ze2 = ze * ze; ze3 = ze2 * ze;                    f1 =    1   -  ze2/2;                    f2 =    ze3*ze/2  - ze3 + ze ;                    f3 =    (ze3*ze/4 - 2*ze3/3 + ze2/2) * L;                    f4 =    ze2/2 ;                    f5 =    -ze *ze3/2 +  ze3;                    f6 =    (ze3*ze/4  - ze3/3) * L;                    inc++;                                     if(inc == 1) {                       /* temp hold of values f(b) */                       X1 = f1; Y1 = f2; Z1 = f3;                        X2 = f4; Y2 = f5; Z2 = f6;                        ze = a/L;                       goto SHP_START;                    }                    else{                       /* f() = f(b) - f(a)  */                       f1 = X1 - f1; f2 =  Y1 - f2; f3 = Z1 - f3;                        f4 = X2 - f4; f5 =  Y2 - f5; f6 = Z2 - f6;                     }                    X1 = bx * f1 * L;                    Y1 = by * f2  * L;                    Z1 = bz * f2 * L;                    MX1 = 0.0 ;                    MY1 =-bz * f3 * L;                    MZ1 = by * f3 * L;                    X2 = bx * f4 * L;                    Y2 = by * f5 * L;                    Z2 = bz * f5 * L;                    MX2 = 0.0 ;                    MY2 =-bz * f6 * L;                    MZ2 = by * f6 * L;                    if (task == STRESS){                        /* +ve  simply support moment at center */                        if(b==L && a== 0.0) {/* udl acting on entire length */                           MCZ = -by * (L * L)/8;                              MCY = -bz * (L * L)/8;                           }                    else { /* approximate mom at center */                        MCZ = -by *(b-a)* (L - (a+b)/2)/2;                           MCY = -bz *(b-a)* (L - (a+b)/2)/2;                       }                 }               }      /* end of dist loading */               else {                 /* Concentrated Loading Condition */                   /* shape functions */                  ze = a/L;      ze2 = ze * ze;        ze3 = ze2 * ze;                  f1 =     1  -  ze;                  f2 =     2 * ze3  -  3 * ze2 + 1;                  f3 =    (ze3 - 2 * ze2 + ze) * L;                  f4 =     ze ;                  f5 =    -2 * ze3  +  3 * ze2;                  f6 =    (ze3 - ze2 ) * L;                  if(my != 0.0 || mz != 0.0){                     /* derivatives of shape function */                       df2x =  6 *( ze2  -  ze) / L;                     df3x =  3 *ze2  - 4*ze  + 1;                     df5x = - df2x;                      df6x =  3 *ze2  - 2*ze;                  }                  X1 = px * f1 + 0;                  Y1 = py * f2 + mz *  df2x;                  Z1 = pz * f2 - my *  df2x;                  MX1 =       mx * f1 ;                  MY1 =-pz * f3 + my *  df3x;                  MZ1 = py * f3 + mz *  df3x;                  X2 = px * f4 + 0;                  Y2 = py * f5 + mz *  df5x;                  Z2 = pz * f5 - my *  df5x;                  MX2 =       mx * f4 ;                  MY2 =-pz * f6 + my *  df6x;                  MZ2 = py * f6 + mz *  df6x;                  if(task == STRESS) { /* +ve  simply support moment at center */                     MCY = -pz * (L -a)/2 ;                        MCZ = -py * (L -a)/2 ;                     }              }              /* Add Contributation to Total Equivalent Load */                 load[0] = load[0] + X1;                 load[1] = load[1] + Y1;                 load[2] = load[2] + Z1;                 load[3] = load[3] + MX1;                 load[4] = load[4] + MY1;                 load[5] = load[5] + MZ1;                 load[6] = load[6] + X2;                 load[7] = load[7] + Y2;                 load[8] = load[8] + Z2;                 load[9] = load[9] + MX2;                 load[10] = load[10] + MY2;                 load[11] = load[11] + MZ2;                 if(task == STRESS) { /* mid pt moment */                    MCYT = MCYT+ MCY;                    MCZT = MCZT+ MCZ;                 }              }              break;         default:              break;    }      /* Rotate to Global */     rmat = (double **) MatrixAllocIndirectDouble(p->size_of_stiff, p->size_of_stiff);    rmat = (double **) tmat(rmat,6,p);    rt   = (double **)MatrixAllocIndirectDouble(p->size_of_stiff, p->size_of_stiff);    for( i=1 ; i<=p->size_of_stiff ; i++ )       for( j=1 ; j<=p->size_of_stiff ; j++ )          rt[j-1][i-1] = rmat[i-1][j-1];    for (inc=1; inc <= p->size_of_stiff; inc++){         p->nodal_loads[inc-1].value = 0.0;         for (j=1; j <= p->size_of_stiff; j++)              p->nodal_loads[inc-1].value = p->nodal_loads[inc-1].value + rt[inc-1][j-1]* (double) load[j-1];    }    MatrixFreeIndirectDouble(rmat, p->size_of_stiff);    MatrixFreeIndirectDouble(rt, p->size_of_stiff);    return(p);} 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -