📄 regrem.m
字号:
function [clusters] = RegrEM(X,N,centers,equal)
% [clusters] = RegrEM(X,N,centers,equal)
% [clusters] = RegrEM(X,N,centers)
% [clusters] = RegrEM(X,N)
%
% Function for determining the clusters using EM algorithm.
%
% Input parameters:
% - X: Data to be modeled; collection of row vector samples (size k x n)
% - N: Number of clusters
% - centers: Cluster center points (optional)
% - equal: '1' if distributions within clusters are equal (default equal=0)
% Return parameters:
% - clusters: Vector (k x 1) showing the clusters for samples
%
% Heikki Hyotyniemi Dec.21, 2000
[k,n] = size(X);
if nargin < 4 | isempty(equal) | isnan(equal)
equal = 0;
end
if nargin < 3 | isempty(centers) | isnan(centers)
centers = X(1:N,:)';
clusters = RegrKM(X,N,centers);
for i = 1:N
centers(:,i) = mean(X(find(clusters==i),:))';
end
disp('Data points divided in preliminary clusters');
end
if size(centers,1) ~= n | size(centers,2) ~= N
disp('Incompatible cluster center vectors');
end
OK = 0;
while ~OK
oldclusters = clusters;
covX = cov(X-centers(:,clusters)');
for i = 1:k
for j = 1:N
meanX = mean(X(find(clusters==j),:))';
if ~equal
covX = cov(X(find(clusters==j),:));
end
p(j) = (2*pi)^(-n/2)*(det(covX)+eps)^(-1/2);
p(j) = p(j)*exp(-(X(i,:)'-meanX)'*inv(covX)*(X(i,:)'-meanX)/2);
end
[maxp,maxi] = max(p);
clusters(i) = maxi;
end
for i = 1:N
centers(:,i) = mean(X(find(clusters==i),:))';
end
disp(['percentage ',num2str(100*sum(clusters-oldclusters==0)/k),' solved']);
if clusters == oldclusters
OK = 1;
end
end
disp('EM algorithm performed')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -