📄 pso4.asv
字号:
%速度更新中取消原速度成分,惯性权线性降低,加速因子c1渐降低,c2渐升高
function [fxmin, xmin, Swarm, history] = PSO4(psoOptions)
%Globals
global psoFlags;
global psoVars;
global psoSParameters;
global notifications;
upbnd = 600; % Upper bound for init. of the swarm
lwbnd = 300; % Lower bound for init. of the swarm
GM = 0; % Global minimum (used in the stopping criterion)
ErrGoal = 1e-10; % Desired accuracy
%
%Initializations
if nargin == 0
psoOptions = get_psoOptions;
end
%For Displaying
if psoOptions.Flags.ShowViz
global vizAxes; %Use the specified axes if using GUI or create a new global if called from command window
vizAxes = plot(0,0, '.');
axis([-1000 1000 -1000 1000 -1000 1000]); %Initially set to a cube of this size
axis square;
grid off;
set(vizAxes,'EraseMode','xor','MarkerSize',15); %Set it to show particles.
pause(1);
end
%End Display initialization
% Initializing variables
success = 0; % Success Flag
iter = 0; % Iterations' counter
fevals = 0; % Function evaluations' counter
% Using params---
% Determine the value of weight change
w_start = 10%psoOptions.SParams.w_start; %Initial inertia weight's value
w_end = 0.9%psoOptions.SParams.w_end; %Final inertia weight
w_varyfor = floor(psoOptions.SParams.w_varyfor*psoOptions.Vars.Iterations); %Weight change step. Defines total number of iterations for which weight is changed.
w_now = w_start;
inertdec = (w_start-w_end)/w_varyfor; %Inertia weight's change per iteration
% Initialize Swarm and Velocity
SwarmSize = psoOptions.Vars.SwarmSize;
Swarm = rand(SwarmSize, psoOptions.Vars.Dim)*(psoOptions.Obj.ub-psoOptions.Obj.lb) + psoOptions.Obj.lb;%lb<Swarm<ub
VStep = rand(SwarmSize, psoOptions.Vars.Dim);
f2eval = psoOptions.Obj.f2eval; %The objective function to optimize.
%Find initial function values.
fSwarm = feval(f2eval, Swarm);%获得函数值f2eval(Swarm)
fevals = fevals + SwarmSize;
% Initializing the Best positions matrix and
% the corresponding function values
PBest = Swarm;
fPBest = fSwarm;
% Finding best particle in initial population
[fGBest, g] = min(fSwarm); % fGbest最优值; g所在行数
lastbpf = fGBest;
Best = Swarm(g,:); %Used to keep track of the Best particle ever
fBest = fGBest;
history = [0, fGBest];
if psoOptions.Flags.Neighbor
% Define social neighborhoods for all the particles
for i = 1:SwarmSize
lo = mod(i-psoOptions.SParam.Nhood:i+psoOptions.SParam.Nhood, SwarmSize);
nhood(i,:) = [lo];
end
nhood(find(nhood==0)) = SwarmSize; %Replace zeros with the index of last particle.
end
if psoOptions.Disp.Interval & (rem(iter, psoOptions.Disp.Interval) == 0)
disp(sprintf('Iterations\t\tfGBest\t\t\tfevals'));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% THE PSO LOOP %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
while( (success == 0) & (iter <= psoOptions.Vars.Iterations) )
iter = iter+1;
% Update the value of the inertia weight w
if (iter<=w_varyfor) & (iter > 1)
w_now = w_now - inertdec; %Change inertia weight
end
%%%%%%%%%%%%%%%%%
% The PLAIN PSO %
% Set GBest
A = repmat(Swarm(g,:), SwarmSize, 1); %A = GBest. repmat(X, m, n) repeats the matrix X in m rows by n columns.
B = A; %B wil be nBest (best neighbor) matrix
% use neighborhood model
% circular neighborhood is used
if psoOptions.Flags.Neighbor
for i = 1:SwarmSize
[fNBest(i), nb(i)] = min(fSwarm( find(nhood(i)) ));
B(i, :) = Swarm(nb(i), :);
end
end
% Generate Random Numbers
R1 = rand(SwarmSize, psoOptions.Vars.Dim);
R2 = rand(SwarmSize, psoOptions.Vars.Dim);
c1=1-exp(-1/(iter-1));
c2=1-c1;
% Calculate Velocity
%if ~psoOptions.Flags.Neighbor %Normal
VStep = w_now*(c1*R1.*(PBest-Swarm) + c2*R2.*(A-Swarm)); %更新速度
%else %With neighborhood
%R3 = rand(SwarmSize, psoOptions.Vars.Dim); %random nos for neighborhood
%VStep = w_now*VStep + psoOptions.SParams.c1*R1.*(PBest-Swarm) + psoOptionsSParams.c2*R2.*(A-Swarm) + psoOptionsSParams.c3*R3.*(B-Swarm);
%end
% Apply Vmax Operator for v > Vmax
changeRows = VStep > psoOptions.SParams.Vmax;
VStep(find(changeRows)) = psoOptions.SParams.Vmax;
% Apply Vmax Operator for v < -Vmax
changeRows = VStep < -psoOptions.SParams.Vmax;
VStep(find(changeRows)) = -psoOptions.SParams.Vmax;
% ::UPDATE POSITIONS OF PARTICLES::
Swarm = Swarm + psoOptions.SParams.Chi * VStep; % 更新粒子(Evaluate new Swarm), psoOptions.SParams.Chi压缩因子
fSwarm = feval(f2eval, Swarm);
fevals = fevals + SwarmSize;
% Updating the best position for each particle
changeRows = fSwarm < fPBest;
fPBest(find(changeRows)) = fSwarm(find(changeRows));
PBest(find(changeRows), :) = Swarm(find(changeRows), :);
lastbpart = PBest(g, :);
% Updating index g
[fGBest, g] = min(fPBest);
%Update Best. Only if fitness has improved.
if fGBest < lastbpf
[fBest, b] = min(fPBest);
Best = PBest(b,:);
end
%%OUTPUT%%
if psoOptions.Save.Interval & (rem(iter, psoOptions.Save.Interval) == 0)
history((size(history,1)+1), :) = [iter, fBest];
end
if psoOptions.Disp.Interval & (rem(iter, psoOptions.Disp.Interval) == 0)
disp(sprintf('%4d\t\t\t%.5g\t\t\t%5d', iter, fGBest, fevals));
end
if psoOptions.Flags.ShowViz
[fworst, worst] = max(fGBest);
DrawSwarm(Swarm, SwarmSize, iter, psoOptions.Vars.Dim, Swarm(g,:), vizAxes);
end
%%TERMINATION%%
if abs(fGBest-psoOptions.Obj.GM) <= psoOptions.Vars.ErrGoal %GBest
success = 1;
elseif abs(fBest-psoOptions.Obj.GM)<=psoOptions.Vars.ErrGoal %Best
success = 1
else
lastbpf = fGBest; %To be used to find Best
end
Iter(iter)=iter;
FBest(iter)=
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% END OF PSO LOOP %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[fxmin, b] = min(fPBest);
xmin = PBest(b, :);
history = history(:,1);
%Comment below line to Return Swarm. Uncomment to return previous best positions.
% Swarm = PBest; %Return PBest
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -