⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vssminpn.m

📁 基于变分贝叶斯方法的状态空间模型学习程序
💻 M
📖 第 1 页 / 共 2 页
字号:
  SigB = inv( Udd - GA'*SigA*GA + diag(beta) );  Bb = MB' - GA'*SigA*SA;    % VBM step compute sufficient statistics (dynamics model)  B = Bb'*SigB;					% < B >  A = ( SA - GA*B' )'*SigA;				% < A >  AA = A'*A + k*( SigA + SigA*GA*SigB*GA'*SigA );	% < A' A >  AB = SigA*SA*B - SigA*GA*( B'*B + k*SigB );		% < A' B >  BB = B'*B + k*SigB;					% < B' B >    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  % UPDATE rho,C,D  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    % VBM step (observation model)  % Compute parameters to represent Q(rho,C,D)  WC = zeros(k,k);  SC = zeros(k,p);  MD = zeros(k,pinp);   % Nota Bene, MD is equivalent to GC in thesis.  for i=1:n    WC = WC+Xmn{i}*Xmn{i}';    for t = 1:Tn(i)      WC = WC+inv(Xcin{i}(:,:,t));    end    SC = SC+ Xmn{i}*Yn{i}';    MD = MD+ Xmn{i}*inpn{i}';  end  SigC = inv( WC + diag(gamma) );  SigD = inv( Udd - MD'*SigC*MD + diag(delta) );  Db = UY - MD'*SigC*SC;  G = diag( Ydd - SC'*SigC*SC -Db'*SigD*Db );    % VBM step compute sufficient statistics (observation model)  rho = (pa+sum(Tn,2)/2)*diag(1./(pb+G/2));		% < R^{-1} > matrix  lnrho = digamma(pa+sum(Tn,2)/2) - log(pb+G/2);	% < -log R_ss > vector  D = Db'*SigD;						% < D >  C = ( SC - MD*D' )'*SigC;				% < C >  CrhoC = C'*rho*C + p*( SigC + SigC*MD*SigD*MD'*SigC );% < C' R^{-1} C >  rhoC = rho*C;						% < R^{-1} C >  CrhoD = SigC*( SC*rho*D - MD*D'*rho*D - p*MD*SigD );	% < C' R^{-1} D >  rhoD = rho*D;						% < R^{-1} D >  DrhoD = D'*rho*D + p*SigD;				% < D' R^{-1} D >  % Is this the last iteration?  finalit = ~(it<its);  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  % UPDATE hidden state  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    % VBE step : q(X) is Gaussian  for i=1:n    [lnZpTn{i},Xm_a,Xci_a] = forwardpass(Yn{i},inpn{i},X0ci_p,X0m_p,A,AA,AB,B,BB,rho,lnrho,CrhoC,rhoC,CrhoD,rhoD,DrhoD,cFbool|finalit);    if cFbool|finalit , lnZpn(i) = sum(lnZpTn{i},2); end    [Xm_b,Xci_b,X0m_b,X0ci_b] = backwardpass(Yn{i},inpn{i},A,AA,B,AB,CrhoC,rhoC,CrhoD);    [Xmn{i},Xcin{i},Upsn{i},X0mn{i},X0cin{i},Ups0n{i}] = getmarginals(Xm_a,Xci_a,Xm_b,Xci_b,X0m_p,X0ci_p,X0m_b,X0ci_b,A,AA,CrhoC);    end      %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  % CALCULATE LOWER BOUND, F  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    if cFbool|finalit    % Calculate F = -kl_A -kl_B -kl_C -kl_D -kl_rho + \sum_{i=1}^n lnZpn_i    % For this we require parameter sufficient statistics and lnZp    [F] = Fcalc(pa,pb,alpha,beta,gamma,delta,SigA,SigB,SigC,SigD,Bb,Db,SA,SC,GA,MD,G,lnZpn,Tn);    % book keeping for F constituents    hist = [hist; F sum(F,2)];    dF = hist(end,7)-hist(end-1,7);    if (dispopt>=3)&cFbool      for hh = 1:size(hFpart);	set(hFpart(hh),'XData',1:(size(hist,1)-1),'YData',hist(2:end,hh));      end      set(hFdiff,'XData',1:(size(hist,1)-1),'YData',log(diff(hist(1:end,end))));      drawnow    end    if dispopt>=2      fprintf('\nit:%4i F: B=%.3f A|B=%.3f rho=%.3f D|rho=%.3f C|rho,D=%.3f Y=%.3f F=%.3f dF=%.3f ',it,hist(end,:),dF);      if dF < 0 % it *should* monotonically increase	fprintf('\n\n!!!!!\n\n F violation \n\n!!!!!\n');	alpha, beta, gamma, delta, A,B,C,D	fprintf('BREAKING (paused)'); pause	break      end    end  end    % Terminate VBEM iteration loop if number of iterations has been reached, or if the lower bound plateaus.  if ~(  (it<its) & (dF>1e-14)  )    break  end    % Display hint of progress  if (round(it/50)==it/50) & (dispopt>=1) & ~cFbool, fprintf('.'); end    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  % HYPERPARAMETER UPDATES  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  if it>=dynhypit    % ARD for the dynamics    alpha = k./diag( k*SigA + SigA*( SA*SA' - 2*GA*B'*SA' + GA*( k*SigB+B'*B )*GA' )*SigA );    beta  = k./diag( k*SigB + B'*B );  end  if it>=outhypit    % ARD for the output process    gamma = p./diag( p*SigC + SigC*( SC*rho*SC' - 2*SC*rho*D*MD' + p*MD*SigD*MD' + MD*D'*rho*D*MD' )*SigC );    delta = p./diag( p*SigD + D'*rho*D );  end  if it>=etchypit    % Hyperparameters for output noise precision (please see report)    [pa,pb] = fixedpointsolver(pa,pb,1/p*sum(lnrho,1),1/p*sum(diag(rho),1));    % Hyperparameters for prior mean and covariance of auxiliary state x_0m (please see report)    X0m_p = 1/n*sum(cat(2,X0mn{:}),2);    tmp = zeros(k,k);    for i=1:n      tmp = tmp+inv(X0cin{i}) + (X0mn{i}-X0m_p)*(X0mn{i}-X0m_p)';    end    X0ci_p = diag(n./diag(tmp));  end  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  % SAVE HISTORIES  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    alphahist = [alphahist alpha];  betahist = [betahist beta];  gammahist = [gammahist gamma];  deltahist = [deltahist delta];  pahist = [pahist pa];  pbhist = [pbhist pb];  X0m_phist = [X0m_phist X0m_p];  X0ci_phist = [X0ci_phist X0ci_p];    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  % DISPLAY HYP-PROGRESS  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  if dispopt>=3    for kk = 1:k      set(halpha(kk),'XData',1:size(alphahist,2),'YData',-log(alphahist(kk,:)));      set(hgamma(kk),'XData',1:size(gammahist,2),'YData',-log(gammahist(kk,:)));    end    for pinpp = 1:pinp      set(hbeta(pinpp),'XData',1:size(betahist,2),'YData',-log(betahist(pinpp,:)));      set(hdelta(pinpp),'XData',1:size(deltahist,2),'YData',-log(deltahist(pinpp,:)));    end      set(hrhomean,'XData',1:size(pahist,2),'YData',pahist./pbhist);      set(hrhovar,'XData',1:size(pahist,2),'YData',log(pahist./(pbhist.^2)));  end  endif dispopt>=1; fprintf('\n--finished--\n'); end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RETURN LEARNT NETWORK FOR ANALYSIS & PERUSAL%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%net = struct('type','Variational State-Space Model (vSSM) with inputs');net.hyp.pa	= pa;net.hyp.pb	= pb;net.hyp.alpha	= alpha;net.hyp.beta	= beta;net.hyp.gamma	= gamma;net.hyp.delta	= delta;net.hyp.X0m_p	= X0m_p;net.hyp.X0ci_p	= X0ci_p;net.param.SigA	= SigA;net.param.SigB	= SigB;net.param.SigC	= SigC;net.param.SigD	= SigD;net.param.Bb	= Bb;net.param.Db	= Db;net.param.SA	= SA;net.param.SC	= SC;net.param.GA	= GA;net.param.MB	= MB;net.param.MD	= MD;net.param.G	= G;net.param.qrhoa	= pa+sum(Tn,2)/2;net.param.qrhob	= pb+G/2;net.exp.A	= A;net.exp.B	= B;net.exp.AA	= AA;net.exp.AB	= AB;net.exp.BB	= BB;net.exp.rho	= rho;net.exp.lnrho	= lnrho;net.exp.C	= C;net.exp.D	= D;net.exp.CrhoC	= CrhoC;net.exp.rhoC	= rhoC;net.exp.CrhoD	= CrhoD;net.exp.rhoD	= rhoD;net.exp.DrhoD	= DrhoD;net.hidden.X0mn	= X0mn;net.hidden.Xmn	= Xmn;net.hidden.X0cin= X0cin;net.hidden.Xcin	= Xcin;net.hidden.Ups0n= Ups0n;net.hidden.Upsn	= Upsn;net.hist.F	= hist;net.hist.pa	= pahist;net.hist.pb	= pbhist;net.hist.alpha	= alphahist;net.hist.beta	= betahist;net.hist.gamma	= gammahist;net.hist.delta	= deltahist;net.hist.X0m_p	= X0m_phist;net.hist.X0ci_p	= X0ci_phist;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -