⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄

📁 红黑数算法及演示源代码
💻
📖 第 1 页 / 共 5 页
字号:
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>红黑树解读</title>
</head>

<body>

<p class="MsoNormal" align="center" style="text-align:center"><span style="font-size:16.0pt;mso-bidi-font-size:12.0pt;font-family:幼圆;mso-ascii-font-family:
&quot;Times New Roman&quot;;letter-spacing:4.0pt">红黑树解读</span><span lang="EN-US" style="font-size:16.0pt;mso-bidi-font-size:12.0pt;mso-fareast-font-family:幼圆;
letter-spacing:4.0pt"><o:p>
</o:p>
</span></p>
<p class="MsoNormal"><span lang="EN-US">&nbsp;<o:p>
</o:p>
</span></p>
<p class="MsoNormal" style="text-indent:17.95pt;mso-char-indent-count:1.71;
mso-char-indent-size:10.45pt"><span style="font-family:宋体;mso-ascii-font-family:
&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">在</span><span lang="EN-US">linux</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;
mso-hansi-font-family:&quot;Times New Roman&quot;">的内核中在数据的组织上已经在许多的地方用到了红黑树,如在内存分配当中,对内存的管理就要用到。很多网友在网上都问这是一个什么样的数据结构。现在,我的这一篇文章就是解决大家这个问题的。</span></p>
<p class="MsoNormal" style="text-indent:17.95pt;mso-char-indent-count:1.71;
mso-char-indent-size:10.45pt"><span lang="EN-US">&nbsp;<o:p>
</o:p>
</span></p>
<p class="MsoNormal" style="text-indent:17.95pt;mso-char-indent-count:1.71;
mso-char-indent-size:10.45pt"><span style="font-family:宋体;mso-ascii-font-family:
&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">红黑树是新进才出现的一种平衡二叉树。它有几个基本的要求:</span></p>
<p class="MsoNormal" style="margin-left:35.95pt;text-indent:-18.0pt;mso-list:
l0 level1 lfo1;tab-stops:list 35.95pt"><span lang="EN-US">1、<span style="font:7.0pt &quot;Times New Roman&quot;">&nbsp; 
</span></span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:
&quot;Times New Roman&quot;">每一个树中的结点必须有颜色,且颜色只能是红色或者黑色。</span></p>
<p class="MsoNormal" style="margin-left:35.95pt;text-indent:-18.0pt;mso-list:
l0 level1 lfo1;tab-stops:list 35.95pt"><span lang="EN-US">2、<span style="font:7.0pt &quot;Times New Roman&quot;">&nbsp; 
</span></span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:
&quot;Times New Roman&quot;">每一个外部结点必须是黑色。</span></p>
<p class="MsoNormal" style="margin-left:35.95pt;text-indent:-18.0pt;mso-list:
l0 level1 lfo1;tab-stops:list 35.95pt"><span lang="EN-US">3、<span style="font:7.0pt &quot;Times New Roman&quot;">&nbsp; 
</span></span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:
&quot;Times New Roman&quot;">如果一个结点是红色,那么它的两个子结点必须是黑色。</span></p>
<p class="MsoNormal" style="margin-left:35.95pt;text-indent:-18.0pt;mso-list:
l0 level1 lfo1;tab-stops:list 35.95pt"><span lang="EN-US">4、<span style="font:7.0pt &quot;Times New Roman&quot;">&nbsp; 
</span></span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:
&quot;Times New Roman&quot;">从每一个父结点到它的所有外部子结点经过的黑色子结点必须相同。</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span lang="EN-US"><!--[if gte vml 1]><v:shapetype
 id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t"
 path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f">
 <v:stroke joinstyle="miter"/>
 <v:formulas>
  <v:f eqn="if lineDrawn pixelLineWidth 0"/>
  <v:f eqn="sum @0 1 0"/>
  <v:f eqn="sum 0 0 @1"/>
  <v:f eqn="prod @2 1 2"/>
  <v:f eqn="prod @3 21600 pixelWidth"/>
  <v:f eqn="prod @3 21600 pixelHeight"/>
  <v:f eqn="sum @0 0 1"/>
  <v:f eqn="prod @6 1 2"/>
  <v:f eqn="prod @7 21600 pixelWidth"/>
  <v:f eqn="sum @8 21600 0"/>
  <v:f eqn="prod @7 21600 pixelHeight"/>
  <v:f eqn="sum @10 21600 0"/>
 </v:formulas>
 <v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"/>
 <o:lock v:ext="edit" aspectratio="t"/>
</v:shapetype><v:shape id="_x0000_i1025" type="#_x0000_t75" style='width:414.75pt;
 height:200.25pt'>
 <v:imagedata src="file:///E:/DOCUME~1/ADMINI~1.000/LOCALS~1/Temp/msoclip1/01/clip_image001.png"
  o:title="display"/>
</v:shape><![endif]-->
<img src="红黑1.jpg" v:shapes="_x0000_i1025" width="553" height="267"></span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span lang="EN-US">&nbsp;<o:p>
</o:p>
</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span style="font-family:宋体;
mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">图</span><span lang="EN-US">1.1</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;
mso-hansi-font-family:&quot;Times New Roman&quot;">就是一个合法红黑树,而图</span><span lang="EN-US">1.2</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:
&quot;Times New Roman&quot;">就不是。</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span lang="EN-US">&nbsp;<o:p>
</o:p>
</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span style="font-family:宋体;
mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">红黑树之所以是一个好的平衡二叉树可以从以下的一个定理得到。</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span lang="EN-US">&nbsp;<o:p>
</o:p>
</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span style="font-family:宋体;
mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">定理:</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span style="mso-spacerun: yes" lang="EN-US">&nbsp;&nbsp; 
</span><span style="font-family:宋体;
mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">如果一个红黑树有</span><span lang="EN-US">n</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;
mso-hansi-font-family:&quot;Times New Roman&quot;">个结点,那它的高度最多是</span><span lang="EN-US">2lg(n+1)</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span lang="EN-US">&nbsp;<o:p>
</o:p>
</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span style="font-family:宋体;
mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">证明:</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span style="mso-spacerun: yes" lang="EN-US">&nbsp;&nbsp; 
</span><span style="font-family:宋体;
mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">我们先定义一个黑高度</span><span lang="EN-US">bh</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;
mso-hansi-font-family:&quot;Times New Roman&quot;">,这表明根结点到一个外部结点的路径上黑结点的个数。(对图</span><span lang="EN-US">1.1</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;
mso-hansi-font-family:&quot;Times New Roman&quot;">的根结点而言,它的黑高度就是</span><span lang="EN-US">2</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:
&quot;Times New Roman&quot;">)先证明对一个有</span><span lang="EN-US">n</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:
&quot;Times New Roman&quot;">个结点的红黑树的黑高度</span><span lang="EN-US">n&gt;=2<sup>bh</sup>-1</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span style="mso-spacerun: yes" lang="EN-US">&nbsp; 
</span><span style="font-family:宋体;
mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">用归纳方法证明。</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span style="mso-spacerun: yes" lang="EN-US">&nbsp; 
</span><span style="font-family:宋体;
mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">如果</span><span lang="EN-US">bh=0 
</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;
mso-hansi-font-family:&quot;Times New Roman&quot;">时结点数是</span><span lang="EN-US">1</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:
&quot;Times New Roman&quot;">,</span><span lang="EN-US">1&gt;=2<sup>0</sup>-1</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:
&quot;Times New Roman&quot;">成立</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span lang="EN-US">&nbsp;<o:p>
</o:p>
</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span style="mso-spacerun: yes" lang="EN-US">&nbsp;</span><span style="font-family:宋体;
mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">并假定在</span><span lang="EN-US">bh</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;
mso-hansi-font-family:&quot;Times New Roman&quot;">以下时也成立</span><span lang="EN-US">,n&gt;=2<sup>bh</sup>-1<sup><o:p>
</o:p>
</sup></span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span style="font-family:宋体;
mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">当高度是</span><span lang="EN-US">bh+1</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;
mso-hansi-font-family:&quot;Times New Roman&quot;">时,这时红黑树的结点数是由两个黑高度分别为</span><span lang="EN-US">bh</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;
mso-hansi-font-family:&quot;Times New Roman&quot;">高度的子树所组成,(不论根结点的子结点是黑色还是红色,因为红色的话比黑色的子树可能的结点数还要多)这时两个子树的结点数和大于</span><span lang="EN-US">2<sup>bh</sup>-1+2<sup>bh</sup>-1</span><span style="font-family:
宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">,然后加上根结点的一个,就可以得到</span><span lang="EN-US">2<sup>bh+1</sup>-1</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span lang="EN-US">&nbsp;<o:p>
</o:p>
</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span style="font-family:宋体;
mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">这个定理的逆就是</span><span lang="EN-US">bh&lt;=lg(n+1)</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span style="font-family:宋体;
mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">因为黑高度至少是红黑树一半,(红色结点的子结点必须是黑色)。所以整个红黑树的高度就是</span><span lang="EN-US">h&lt;=2lg(n+1)</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span lang="EN-US">&nbsp;<o:p>
</o:p>
</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span style="font-family:宋体;
mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">这就保证了红黑树的查找的复杂度是</span><span lang="EN-US">O</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;
mso-hansi-font-family:&quot;Times New Roman&quot;">(</span><span lang="EN-US">lgn</span><span style="font-family:宋体;mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:
&quot;Times New Roman&quot;">),这是一个很好的平衡二叉树。</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span lang="EN-US">&nbsp;<o:p>
</o:p>
</span></p>
<p class="MsoNormal" style="margin-left:17.95pt"><span style="font-family:宋体;
mso-ascii-font-family:&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">下面我要结合真正的源代码来分析红黑树在添加与删除时用的算法。</span></p>
<p class="MsoNormal" style="text-indent:17.95pt;mso-char-indent-count:1.71;
mso-char-indent-size:10.45pt"><span lang="EN-US">&nbsp;<o:p>
</o:p>
</span></p>
<p class="MsoBodyTextIndent"><span style="font-family:宋体;mso-ascii-font-family:
&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">在这当中的添加与删除本身都没有什么难度,但为了满足红黑树的四个要求,作一些调整则要详细的讲说。</span></p>
<p class="MsoNormal" style="text-indent:17.95pt;mso-char-indent-count:1.71;
mso-char-indent-size:10.45pt"><span lang="EN-US">&nbsp;<o:p>
</o:p>
</span></p>
<p class="MsoNormal" style="text-indent:17.95pt;mso-char-indent-count:1.71;
mso-char-indent-size:10.45pt"><span style="font-family:宋体;mso-ascii-font-family:
&quot;Times New Roman&quot;;mso-hansi-font-family:&quot;Times New Roman&quot;">下面是添加的例子的开始部分的源代码</span></p>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -