⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fft.cpp

📁 该程序是用C写的FFT的程序
💻 CPP
字号:
/**********************************************************************  FFT.cpp  Dominic Mazzoni  September 2000  This file contains a few FFT routines, including a real-FFT  routine that is almost twice as fast as a normal complex FFT,  and a power spectrum routine when you know you don't care  about phase information.  Some of this code was based on a free implementation of an FFT  by Don Cross, available on the web at:    http://www.intersrv.com/~dcross/fft.html  The basic algorithm for his code was based on Numerican Recipes  in Fortran.  I optimized his code further by reducing array  accesses, caching the bit reversal table, and eliminating  float-to-double conversions, and I added the routines to  calculate a real FFT and a real power spectrum.**********************************************************************/#include <stdlib.h>#include <stdio.h>#include <math.h>#include "FFT.h"#ifndef M_PI#define	M_PI		3.14159265358979323846	/* pi */#endifint **gFFTBitTable = NULL;const int MaxFastBits = 16;int IsPowerOfTwo (int x){  if ( x < 2 )	return false;    if ( x & (x-1) )  /* Thanks to 'byang' for this cute trick! */	return false;    return true;}int NumberOfBitsNeeded (int PowerOfTwo){  int i;    if ( PowerOfTwo < 2 ) {	fprintf(stderr, "Error: FFT called with size %d\n", PowerOfTwo);	exit(1);  }  for ( i=0; ; i++ )	if ( PowerOfTwo & (1 << i) )	  return i;}int ReverseBits ( int index, int NumBits ){  int i, rev;    for ( i=rev=0; i < NumBits; i++ ) {	rev = (rev << 1) | (index & 1);	index >>= 1;  }    return rev;}void InitFFT(){  gFFTBitTable = new int *[MaxFastBits];  int len=2;  for(int b=1; b<=MaxFastBits; b++) {	gFFTBitTable[b-1] = new int[len];	for(int i=0; i<len; i++)	  gFFTBitTable[b-1][i] = ReverseBits(i, b);	len <<= 1;  }}inline int FastReverseBits(int i, int NumBits){  if (NumBits <= MaxFastBits)  	return gFFTBitTable[NumBits-1][i];  else	return ReverseBits(i, NumBits);}/* * Complex Fast Fourier Transform */void FFT (    int       NumSamples,    bool      InverseTransform,    float    *RealIn,    float    *ImagIn,    float    *RealOut,    float    *ImagOut ){  int NumBits;    /* Number of bits needed to store indices */  int i, j, k, n;  int BlockSize, BlockEnd;  double angle_numerator = 2.0 * M_PI;  float tr, ti;     /* temp real, temp imaginary */  if ( !IsPowerOfTwo(NumSamples) ) {	fprintf (stderr, "%d is not a power of two\n", NumSamples);	exit(1);  }  if (!gFFTBitTable)	InitFFT();    if ( InverseTransform )	angle_numerator = -angle_numerator;    NumBits = NumberOfBitsNeeded ( NumSamples );  /*  **   Do simultaneous data copy and bit-reversal ordering into outputs...  */    for ( i=0; i < NumSamples; i++ ) {	j = FastReverseBits ( i, NumBits );	RealOut[j] = RealIn[i];	ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i];  }    /*  **   Do the FFT itself...  */    BlockEnd = 1;  for ( BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1 ) {	  double delta_angle = angle_numerator / (double)BlockSize;	  float sm2 = sin ( -2 * delta_angle );	  float sm1 = sin ( -delta_angle );	  float cm2 = cos ( -2 * delta_angle );	  float cm1 = cos ( -delta_angle );	  float w = 2 * cm1;	  float ar0, ar1, ar2, ai0, ai1, ai2;			  for ( i=0; i < NumSamples; i += BlockSize ) {		ar2 = cm2;		ar1 = cm1;				ai2 = sm2;		ai1 = sm1;				for ( j=i, n=0; n < BlockEnd; j++, n++ ) {		  ar0 = w*ar1 - ar2;		  ar2 = ar1;		  ar1 = ar0;		  		  ai0 = w*ai1 - ai2;		  ai2 = ai1;		  ai1 = ai0;		  		  k = j + BlockEnd;		  tr = ar0*RealOut[k] - ai0*ImagOut[k];		  ti = ar0*ImagOut[k] + ai0*RealOut[k];		  		  RealOut[k] = RealOut[j] - tr;		  ImagOut[k] = ImagOut[j] - ti;		  		  RealOut[j] += tr;		  ImagOut[j] += ti;		}	  }	  	  BlockEnd = BlockSize;  }    /*  **   Need to normalize if inverse transform...  */    if ( InverseTransform ) {	float denom = (float)NumSamples;		for ( i=0; i < NumSamples; i++ ) {	  RealOut[i] /= denom;	  ImagOut[i] /= denom;	}  }}/* * Real Fast Fourier Transform * * This function was based on the code in Numerical Recipes in C. * In Num. Rec., the inner loop is based on a single 1-based array * of interleaved real and imaginary numbers.  Because we have two * separate zero-based arrays, our indices are quite different. * Here is the correspondence between Num. Rec. indices and our indices: * * i1  <->  real[i] * i2  <->  imag[i] * i3  <->  real[n/2-i] * i4  <->  imag[n/2-i] */void RealFFT(    int       NumSamples,    float    *RealIn,    float    *RealOut,    float    *ImagOut ){  int Half = NumSamples/2;  int i;  float theta = M_PI / Half;  float *tmpReal = new float[Half];  float *tmpImag = new float[Half];  for(i=0; i<Half; i++) {	tmpReal[i] = RealIn[2*i];	tmpImag[i] = RealIn[2*i+1];  }    FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut);  float wtemp = float(sin(0.5*theta));  float wpr = -2.0 * wtemp * wtemp;  float wpi = float(sin(theta));  float wr = 1.0+wpr;  float wi = wpi;    int i3;  float h1r, h1i, h2r, h2i;  for(i=1; i<Half/2; i++) {	i3 = Half-i;	h1r = 0.5*(RealOut[i]+RealOut[i3]);	h1i = 0.5*(ImagOut[i]-ImagOut[i3]);	h2r = 0.5*(ImagOut[i]+ImagOut[i3]);	h2i = -0.5*(RealOut[i]-RealOut[i3]);	RealOut[i]=h1r+wr*h2r-wi*h2i;	ImagOut[i]=h1i+wr*h2i+wi*h2r;	RealOut[i3]=h1r-wr*h2r+wi*h2i;	ImagOut[i3]=-h1i+wr*h2i+wi*h2r;	wr=(wtemp=wr)*wpr-wi*wpi+wr;	wi=wi*wpr+wtemp*wpi+wi;  }  RealOut[0] = (h1r=RealOut[0])+ImagOut[0];  ImagOut[0] = h1r-ImagOut[0];  delete[] tmpReal;  delete[] tmpImag;}/* * PowerSpectrum * * This function computes the same as RealFFT, above, but * adds the squares of the real and imaginary part of each * coefficient, extracting the power and throwing away the * phase. * * For speed, it does not call RealFFT, but duplicates some * of its code. */void PowerSpectrum(    int       NumSamples,    float    *In,    float    *Out ){  int Half = NumSamples/2;  int i;  float theta = M_PI / Half;  float *tmpReal = new float[Half];  float *tmpImag = new float[Half];  float *RealOut = new float[Half];  float *ImagOut = new float[Half];  for(i=0; i<Half; i++) {	tmpReal[i] = In[2*i];	tmpImag[i] = In[2*i+1];  }    FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut);  float wtemp = float(sin(0.5*theta));  float wpr = -2.0 * wtemp * wtemp;  float wpi = float(sin(theta));  float wr = 1.0+wpr;  float wi = wpi;    int i3;  float h1r, h1i, h2r, h2i, rt, it;  for(i=1; i<Half/2; i++) {	i3 = Half-i;	h1r = 0.5*(RealOut[i]+RealOut[i3]);	h1i = 0.5*(ImagOut[i]-ImagOut[i3]);	h2r = 0.5*(ImagOut[i]+ImagOut[i3]);	h2i = -0.5*(RealOut[i]-RealOut[i3]);	rt = h1r+wr*h2r-wi*h2i;	it = h1i+wr*h2i+wi*h2r;	Out[i] = rt*rt + it*it;	rt = h1r-wr*h2r+wi*h2i;	it = -h1i+wr*h2i+wi*h2r;	Out[i3] = rt*rt + it*it;	wr=(wtemp=wr)*wpr-wi*wpi+wr;	wi=wi*wpr+wtemp*wpi+wi;  }  rt = (h1r=RealOut[0])+ImagOut[0];  it = h1r-ImagOut[0];  Out[0] = rt*rt + it*it;  rt = RealOut[Half/2];  it = ImagOut[Half/2];  Out[Half/2] = rt*rt + it*it;  delete[] tmpReal;  delete[] tmpImag;  delete[] RealOut;  delete[] ImagOut;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -