⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 oc54_cpu.v

📁 并行处理器计算单元数据通路设计源代码
💻 V
字号:
/////////////////////////////////////////////////////////////////////////                                                             ////////  OpenCores54 DSP, CPU                                       ////////                                                             ////////  Author: Richard Herveille                                  ////////          richard@asics.ws                                   ////////          www.asics.ws                                       ////////                                                             /////////////////////////////////////////////////////////////////////////////                                                             //////// Copyright (C) 2002 Richard Herveille                        ////////                    richard@asics.ws                         ////////                                                             //////// This source file may be used and distributed without        //////// restriction provided that this copyright statement is not   //////// removed from the file and that any derivative work contains //////// the original copyright notice and the associated disclaimer.////////                                                             ////////     THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY     //////// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED   //////// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS   //////// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR      //////// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,         //////// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES    //////// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE   //////// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR        //////// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF  //////// LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT  //////// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT  //////// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE         //////// POSSIBILITY OF SUCH DAMAGE.                                 ////////                                                             /////////////////////////////////////////////////////////////////////////				//// NOTE: Read the pipeline information for the CMPS instruction////// Xilinx Virtex-E WC: 41 CLB slices @ 130MHz//									 //  CVS Log														     //																     //  $Id: oc54_cpu.v,v 1.1.1.1 2002/04/10 09:34:41 rherveille Exp $														     //																     //  $Date: 2002/04/10 09:34:41 $														 //  $Revision: 1.1.1.1 $													 //  $Author: rherveille $													     //  $Locker:  $													     //  $State: Exp $														 //																     // Change History:												     //               $Log: oc54_cpu.v,v $//               Revision 1.1.1.1  2002/04/10 09:34:41  rherveille//               Initial relase OpenCores54x DSP (CPU)//											 																`include "timescale.v"module oc54_cpu (	clk_i, 	ena_mac_i, ena_alu_i, ena_bs_i, ena_exp_i,	ena_treg_i, ena_acca_i, ena_accb_i,	// mac	mac_sel_xm_i, mac_sel_ym_i, mac_sel_ya_i,	mac_xm_sx_i, mac_ym_sx_i,	mac_add_sub_i,	// alu	alu_inst_i, alu_sel_i, alu_doublet_i,	// bs	bs_sel_i, bs_selo_i, l_na_i,	cssu_sel_i, is_cssu_i,	// 	exp_sel_i, treg_sel_i, 	acca_sel_i, accb_sel_i,	// common	pb_i, cb_i, db_i,	bp_a_i, bp_b_i,	ovm_i, frct_i, smul_i, sxm_i, c16_i, rnd_i,	c_i, tc_i,	asm_i, imm_i,	// outputs	c_alu_o, c_bs_o, tc_cssu_o, tc_alu_o,	ovf_a_o, zf_a_o, ovf_b_o, zf_b_o,	trn_o, eb_o	);//// parameters////// inputs & outputs//input         clk_i;input         ena_mac_i, ena_alu_i, ena_bs_i, ena_exp_i;input         ena_treg_i, ena_acca_i, ena_accb_i;input  [ 1:0] mac_sel_xm_i, mac_sel_ym_i, mac_sel_ya_i;input         mac_xm_sx_i, mac_ym_sx_i, mac_add_sub_i;input  [ 6:0] alu_inst_i;input  [ 1:0] alu_sel_i;input         alu_doublet_i;input  [ 1:0] bs_sel_i, bs_selo_i;input         l_na_i;input         cssu_sel_i, is_cssu_i;input         exp_sel_i, treg_sel_i;input  [ 1:0] acca_sel_i, accb_sel_i;input  [15:0] pb_i, cb_i, db_i;input         bp_a_i, bp_b_i;input         ovm_i, frct_i, smul_i, sxm_i;input         c16_i, rnd_i, c_i, tc_i, asm_i, imm_i;output        c_alu_o, c_bs_o, tc_cssu_o, tc_alu_o;output        ovf_a_o, zf_a_o, ovf_b_o, zf_b_o;output [15:0] trn_o, eb_o;//// variables//wire [39:0] acc_a, acc_b, bp_ar, bp_br;wire [39:0] mac_result, alu_result, bs_result;wire [15:0] treg;wire [ 5:0] exp_result;//// module body//	//	// instantiate MAC	oc54_mac cpu_mac(		.clk(clk_i),             // clock input		.ena(ena_mac_i),         // MAC clock enable input		.a(acc_a),               // accumulator A input		.b(acc_b),               // accumulator B input		.t(treg),                // TREG input		.p(pb_i),                // Program Data Bus input		.c(cb_i),                // Coefficient Data Bus input		.d(db_i),                // Data Bus input		.sel_xm(mac_sel_xm_i),   // select multiplier-X input		.sel_ym(mac_sel_ym_i),   // select muliplier-Y input		.sel_ya(mac_sel_ya_i),   // select adder-Y input		.bp_a(bp_a_i),           // bypass accumulator A select input		.bp_b(bp_b_i),           // bypass accumulator B select input		.bp_ar(bp_ar),           // bypass accumulator A input		.bp_br(bp_br),           // bypass accumulator B input		.xm_s(mac_xm_sx_i),      // sign extend multiplier x-input		.ym_s(mac_ym_sx_i),      // sign extend multiplier y-input		.ovm(ovm_i),             // overflow mode input		.frct(frct_i),           // fractional mode input		.smul(smul_i),           // saturate on multiply input		.add_sub(mac_add_sub_i), // add/subtract input		.result(mac_result)      // MAC result output	);	//	// instantiate ALU	oc54_alu cpu_alu(		.clk(clk_i),             // clock input		.ena(ena_alu_i),         // ALU clock enable input		.inst(alu_inst_i),       // ALU instruction		.seli(alu_sel_i),        // ALU x-input select		.doublet(alu_doublet_i), // double t {treg, treg}		.a(acc_a),               // accumulator A input		.b(acc_b),               // accumulator B input		.s(bs_result),           // barrel shifter result input		.t(treg),                // TREG input		.cb(cb_i),               // Coefficient Data Bus input		.bp_a(bp_a_i),           // bypass accumulator A select input		.bp_b(bp_b_i),           // bypass accumulator B select input		.bp_ar(bp_ar),           // bypass accumulator A input		.bp_br(bp_br),           // bypass accumulator B input		.c16(c16_i),             // c16 (double 16/long-word) input		.sxm(sxm_i),             // sign extend mode input		.ci(c_i),                // carry input		.tci(tc_i),              // test/control flag input		.co(c_alu_o),            // ALU carry output		.tco(tc_alu_o),          // ALU test/control flag output		.result(alu_result)      // ALU result output	);	//	// instantiate barrel shifter	oc54_bshft cpu_bs(		.clk(clk_i),             // clock input		.ena(ena_bs_i),          // BS clock enable input		.seli(bs_sel_i),         // BS operand select input		.a(acc_a),               // accumulator A input		.b(acc_b),               // accumulator B input		.cb(cb_i),               // Coefficient Data Bus input		.db(db_i),               // Data Bus input		.bp_a(bp_a_i),           // bypass accumulator A select input		.bp_b(bp_b_i),           // bypass accumulator B select input		.bp_ar(bp_ar),           // bypass accumulator A input		.bp_br(bp_br),           // bypass accumulator B input		.selo(bs_selo_i),        // BS operator select input		.t(treg),                // TREG input		.asm(asm_i),             // Accumulator Shift Mode input		.imm(imm_i),             // Opcode Immediate input		.l_na(l_na_i),           // BS logical/arithmetic shift mode input		.sxm(sxm_i),             // sign extend mode input		.co(c_bs_o),             // BS carry output (1 cycle ahead)		.result(bs_result)       // BS result output	);	// instantiate Compare Select Store Unit	oc54_cssu cpu_cssu(		.clk(clk_i),             // clock input		.ena(ena_bs_i),          // BS/CSSU clock enable input		.sel_acc(cssu_sel_i),    // CSSU accumulator select input		.a(acc_a),               // accumulator A input		.b(acc_b),               // accumulator B input		.s(bs_result),           // BarrelShifter result input		.is_cssu(is_cssu_i),     // CSSU/NormalShift operation		.tco(tc_cssu_o),         // test/control flag output		.trn(trn_o),             // Transition register output		.result(eb_o)            // Result Data Bus output	);	//	// instantiate Exponent Encoder	oc54_exp cpu_exp_enc(		.clk(clk_i),             // clock input		.ena(ena_exp_i),         // Exponent Encoder clock enable input		.sel_acc(exp_sel_i),     // ExpE. accumulator select input		.a(acc_a),               // accumulator A input		.b(acc_b),               // accumulator B input		.bp_a(bp_a_i),           // bypass accumulator A select input		.bp_b(bp_b_i),           // bypass accumulator B select input		.bp_ar(bp_ar),           // bypass accumulator A input		.bp_br(bp_br),           // bypass accumulator B input		.result(exp_result)      // Exponent Encoder result output	);		//	// instantiate Temporary Register	oc54_treg cpu_treg(		.clk(clk_i),             // clock input		.ena(ena_treg_i),        // treg clock enable input		.we(1'b1),               // treg write enable input		.seli(treg_sel_i),       // treg select input		.exp(exp_result),        // Exponent Encoder Result input		.d(db_i),                // Data Bus input		.result(treg)            // TREG	);	//	// instantiate accumulators	oc54_acc cpu_acc_a(		.clk(clk_i),             // clock input		.ena(ena_acca_i),        // accumulator A clock enable input		.seli(acca_sel_i),       // accumulator A select input      		.we(1'b1),               // write enable input		.a(acc_a),               // accumulator A input		.b(acc_b),               // accumulator B input		.alu(alu_result),        // ALU result input		.mac(mac_result),        // MAC result input		.ovm(ovm_i),             // overflow mode input		.rnd(rnd_i),             // mac-rounding input		.zf(zf_a_o),             // accumulator A zero flag output		.ovf(ovf_a_o),           // accumulator A overflow flag output		.bp_result(bp_ar),       // bypass accumulator A output		.result(acc_a)           // accumulator A output	);		oc54_acc cpu_acc_b(		.clk(clk_i),             // clock input		.ena(ena_accb_i),        // accumulator B clock enable input		.seli(accb_sel_i),       // accumulator B select input      		.we(1'b1),               // write enable input		.a(acc_a),               // accumulator A input		.b(acc_b),               // accumulator B input		.alu(alu_result),        // ALU result input		.mac(mac_result),        // MAC result input		.ovm(ovm_i),             // overflow mode input		.rnd(rnd_i),             // mac-rounding input		.zf(zf_b_o),             // accumulator B zero flag output		.ovf(ovf_b_o),           // accumulator B overflow flag output		.bp_result(bp_br),       // bypass accumulator B output		.result(acc_b)           // accumulator B output	);endmodule

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -