📄 mlcgmm.m~
字号:
function model=mlcgmm(data,cov_type)% MLCGMM Maximal Likelihood estimation of Gaussian mixture model.% % Synopsis:% model = mlcgmm(X)% model = mlcgmm(X,cov_type)% model = mlcgmm(data)% model = mlcgmm(data,cov_type)% % Description:% It computes Maximum Likelihood estimation of parameters% of Gaussian mixture model for given labeled data sample% (complete data).%% model = mlcgmm(X) computes parameters (model.Mean,model.Cov)% of a single Gaussian distribution for given sample of column % vectors X (all labels are assumed to be 1).%% model = mlcgmm(X,cov_type) specifies shape of covariance matrix:% cov_type = 'full' full covariance matrix (default)% cov_type = 'diag' diagonal covarinace matrix% cov_type = 'spherical' spherical covariance matrix%% model = mlcgmm(data) computes parameters of a Gaussian mixture model% from a given labeled data sample% data.X ... samples,% data.y .. labels.% It estimates parameters of ncomp=max(data.y) Gaussians and% a priory probabilities Prior [1 x ncomp] using Maximum-Likelihood % principle.%% Input:% X [dim x num_data] Data sample.% data.X [dim x num_data] Data sample.% data.y [1 x num_data] Data labels.% cov_type [string] Type of covariacne matrix (see above).%% Output:% model [struct] Estimated Gaussian mixture model:% .Mean [dim x ncomp] Mean vectors.% .Cov [dim x dim x ncomp] Covariance matrices.% .Prior [1 x ncomp] Estimated a priory probabilities.% % Example:% data = load('riply_trn');% model = mlcgmm( data );% figure; hold on; ppatterns(data); pgauss( model );% figure; hold on; ppatterns(data); pgmm( model );%% See also % EMGMM, MMGAUSS, PDFGMM.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 17-aug-2004, VF, labels y do not have to form a sequence 1,2,...,max_y% 2-may-2004, VF% 29-apr-2004, VF% 19-sep-2003, VF% 27-feb-2003, VF% processing of inputsdata=c2s(data);if ~isstruct(data), data.X = data; data.y = ones(1,size(data.X,2));end if nargin < 2, cov_type = 'full'; end[dim,num_data] = size(data.X);labels = unique(data.y);model.Mean = zeros(dim,max(labels));model.Cov = zeros(dim,dim,max(labels));for i=1:length(labels), inx = find(data.y==labels(i)); n = length(inx); model.Mean(:,i) = sum(data.X(:,inx),2)/n; XC=data.X(:,inx)-model.Mean(:,i)*ones(1,n); switch cov_type, case 'full', model.Cov(:,:,i) = XC*XC'/n; case 'diag', model.Cov(:,:,i) = diag(sum(XC.^2,2)/n); case 'spherical' model.Cov(:,:,i) = eye(dim,dim)*sum(sum(XC.^2))/(n*dim); otherwise error('Wrong cov_type.'); end model.Prior(i) = n/num_data; model.y(i) = labels(i);endmodel.cov_type = cov_type;model.fun = 'pdfgmm';return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -