⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rspoly2.m~

📁 用matlab实现的统计模式识别工具箱
💻 M~
字号:
function red_model = redquadh(model)% REDQUADH reduced SVM classifier with homogeneous quadratic kernel.%% Synopsis:%  red_model = redquadh(model)%% Description:%  It uses reduced set techique (Burges) to compute %  simpler SVM binary rule with homogeneous quadratic kernel (x'*y)^2.%  % Input:%  model.Alpha [nsv x 1] Weights of kernel expansion.%  model.b [scalar] Bias.%  model.sv.X [dim x nsv] Support vectors.%  model.options.ker = 'poly'%  model.options.arg = [2 0]%% Output:%  red_model.Alpha [new_nsv x 1] New weights.%  red_model.b [scalar] Bias.%  red_model.sv.X [dim x new_nsv] New "support vectors".%  ...%% Example:%  trn = load('riply_trn');%  model = smo(trn,{'ker','poly','arg',[2 0],'C',10});%  red_model = redquadh( model );%  figure; ppatterns(trn); psvm(model);%  figure; ppatterns(trn); psvm(red_model);%% Modifications:% 28-nov-2003, VFdim=size(model.sv.X,1);nsv = model.nsv;S = zeros(dim,dim);for i=1:dim,  for j=i:dim,    S(i,j) = (model.sv.X(i,:).*model.sv.X(j,:) )*model.Alpha(:);    S(j,i) = S(i,j);  endend[V,D] = eig(S);D=real(diag(D));[dummy,inx] = sort(-abs(D));D=D(inx);V=V(:,inx);inx = find(D ~= 0);red_model.nsv = length(inx);red_model.Alpha = zeros(red_model.nsv,1);red_model.b = model.b;red_model.sv.X = zeros(dim,red_model.nsv);red_model.options = model.options;red_model.classifier = 'svmclass';red_model.eigval = D(inx);cnt = 0;for i=inx(:)',  cnt = cnt+1;  red_model.sv.X(:,cnt) = V(:,i);  red_model.Alpha(cnt) = D(i)/(red_model.sv.X(:,cnt)'*red_model.sv.X(:,cnt));endreturn;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -