📄 roc.m
字号:
function [FP,FN]=roc(dfce,y)% ROC Computes Receive Operator Characteristic.%% Synopsis:% [FP,FN]=roc(dfce,y)% % Description:% It computes false positive rate FP and false negative rate FN% with rescpect to the shift of the bias of given decision function.% The values of the decision function are given in dfce and y % contains true labels (number 1 and/or 2). The vectors dfce and y % must be of the same length. % The bias is shifted from min(dfce) to max(dfce). %% Input:% dfce [1 x num_data] Values of decision function returned by % a classifier.% y [1 x num_data] True labels.%% Output:% FP [1 x num_data] False positive rate.% FN [1 x num_data] False negative rate.%% Example:% data = load('riply_trn');% model = fld(data);% [y_pred,dfce] = linclass(data.X,model);% [FP,FN] = roc(dfce,data.y);% figure; hold on; plot(FP,FN);% xlabel('false positives'); % ylabel('false negatives');%% See also % CERROR%% (c) Statistical Pattern Recognition Toolbox, (C) 1999-2003,% Written by Vojtech Franc and Vaclav Hlavac,% <a href="http://www.cvut.cz">Czech Technical University Prague</a>,% <a href="http://www.feld.cvut.cz">Faculty of Electrical engineering</a>,% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 17-may-2004, VF% 6-June-2003, VF% 24-Feb-2003, VFnum_data=length(dfce);n1=length(find(y==1));n2=length(find(y==2));[dfce,inx]=sort(dfce);y = y(inx);FP=zeros(1,num_data);FN=zeros(1,num_data);wrong1=0;wrong2=n2;for i=1:num_data, if y(i) == 1, wrong1=wrong1+1; else wrong2=wrong2-1; end FP(i)=wrong2/n2; FN(i)=wrong1/n1;endreturn;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -