📄 kmeans.html
字号:
<html><head> <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1"> <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../stpr.css"></head><body><table border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">KMEANS</b><td valign="baseline" align="right" class="function"><a href="../probab/index.html" target="mdsdir"><img border = 0 src="../up.gif"></a></table> <p><b>K-means clustering algorithm.</b></p> <hr><div class='code'><code><span class=help> </span><br><span class=help> <span class=help_field>Synopsis:</span></span><br><span class=help> [model,y] = kmeans(X,num_centers)</span><br><span class=help> [model,y] = kmeans(X,num_centers,Init_centers)</span><br><span class=help></span><br><span class=help> <span class=help_field>Description:</span></span><br><span class=help> [model,y] = kmeans(X,num_centers) runs K-means clustering </span><br><span class=help> where inital centers are randomly selected from the </span><br><span class=help> input vectors X. The output are found centers stored in </span><br><span class=help> structure model.</span><br><span class=help> </span><br><span class=help> [model,y] = kmeans(X,num_centers,Init_centers) uses</span><br><span class=help> init_centers as the starting point.</span><br><span class=help></span><br><span class=help> <span class=help_field>Input:</span></span><br><span class=help> X [dim x num_data] Input vectors.</span><br><span class=help> num_centers [1x1] Number of centers.</span><br><span class=help> Init_centers [1x1] Starting point of the algorithm.</span><br><span class=help> </span><br><span class=help> <span class=help_field>Output:</span></span><br><span class=help> model [struct] Found clustering:</span><br><span class=help> .X [dim x num_centers] Found centers.</span><br><span class=help></span><br><span class=help> .y [1 x num_centers] Implicitly added labels 1..num_centers.</span><br><span class=help> .t [1x1] Number of iterations.</span><br><span class=help> .MsErr [1xt] Mean-Square error at each iteration.</span><br><span class=help></span><br><span class=help> y [1 x num_data] Labels assigned to data according to </span><br><span class=help> the nearest center.</span><br><span class=help></span><br><span class=help> <span class=help_field>Example:</span></span><br><span class=help> data = load('riply_trn');</span><br><span class=help> [model,data.y] = kmeans( data.X, 4 );</span><br><span class=help> figure; ppatterns(data); </span><br><span class=help> ppatterns(model,12); pboundary( model );</span><br><span class=help></span><br><span class=help> <span class=also_field>See also </span><span class=also></span><br><span class=help><span class=also> <a href = "../probab/estimation/emgmm.html" target="mdsbody">EMGMM</a>, <a href = "../misc/knnclass.html" target="mdsbody">KNNCLASS</a>.</span><br><span class=help></span><br></code></div> <hr> <b>Source:</b> <a href= "../probab/list/kmeans.html">kmeans.m</a> <p><b class="info_field">(c) </b> Statistical Pattern Recognition Toolbox, (C) 1999-2003,<br> Written by Vojtech Franc and Vaclav Hlavac,<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a>,<br> <a href="http://www.feld.cvut.cz">Faculty of Electrical engineering</a>,<br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a><br> <p><b class="info_field">Modifications: </b> <br> 12-may-2004, VF<br></body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -