📄 references.html
字号:
<html><h1>References</h1><p><a name='Anderson62'><tt>[Anderson62]</tt>T.W.Anderson and R.R.Bahadur.<b>Classification into two multivariate normal distributions with differrentia covariance matrices.</b>.<i>Anals of Mathematical Statistics</i>, 33:420--431, June 1962.<p><a name='Baudat01'><tt>[Baudat01]</tt>G.Baudat and F.Anouar.<b>Generalized discriminant analysis using a kernel approach</b>.<i>Neural Computation</i>, 12(10):2385--2404, 2000.<p><a name='Bishop97'><tt>[Bishop97]</tt>C.M.Bishop.<i>Neural Networks for Pattern Recognition</i>.Clarendon Press, Oxford, Great Britain, 3th edition, 1997.<p><a name='Cris00'><tt>[Cris00]</tt>N.Cristianini and J.Shawe-Taylor.<i>Support Vector Machines</i>.Cambridge University Press, 2000.<p><a name='DLR77'><tt>[DLR77]</tt>A.P.Dempster, N.M.Laird, and D.B.Rubin.<b>Maximum likelihood from incomplete data via the {EM} {A}lgorithm</b>.<i>Journal of the Royal Statistical Society</i>, 39:185--197, 1977.<p><a name='DHS01'><tt>[DHS01]</tt>R.O.Duda, P.E.Hart, and D.G.Stork.<i>Pattern Classification</i>.John Wiley \& Sons, 2nd. edition, 2001.<p><a name='Duin00'><tt>[Duin00]</tt>R.P.W.Duin.<b>Prtools: A matlab toolbox for pattern recognition</b>, 2000.<p><a name='Franc2000'><tt>[Franc2000]</tt>V.Franc.<b>Programov{\'e} n{\'a}stroje pro rozpozn{\'a}v{\'a}n{\'\i} ({P}attern {R}ecognition {P}rogramming {T}ools, {I}n {C}zech)</b>.Master's thesis, {\v C}esk{\' e} vysok{\' e} u{\v c}en{\'\i} technick{\' e}, Fakulta elektrotechnick{\'a}, Katedra kybernetiky, February 2000.<p><a name='Franc02'><tt>[Franc02]</tt>V.Franc and V.Hlav{\'a}{\v c}.<b>Multi-class support vector machine</b>.In R.Kasturi, D.Laurendeau, and SuenC., editors, <i>16th International Conference on Pattern Recognition</i>, vol. 2, pages 236--239. IEEE Computer Society, 2002.<p><a name='Franc03'><tt>[Franc03]</tt>V.Franc and V.Hlav{\'a}{\v c}.<b>An iterative algorithm learning the maximal margin classifier</b>.<i>Pattern Recognition</i>, 36(9):1985--1996, 2003.<p><a name='Franc03b'><tt>[Franc03b]</tt>V.Franc and V.Hlav\'a\v{c}.<b>Greedy algorithm for a training set reduction in the kernel methods</b>.In N.Petkov and M.A.Westenberg, editors, <i>Computer Analysis of Images and Patterns</i>, pages 426--433, Berlin, Germany, 2003. Springer.<p><a name='Girol03'><tt>[Girol03]</tt>M.Girolami and C.He.<b>Probability density estimation from optimally condensed data samples</b>.<i>IEEE Transactions on Pattern Analysis and Machine Learning</i>, 25(10):1253--1264, October 2003.<p><a name='Hsu02'><tt>[Hsu02]</tt>C.W.Hsu and C.J.Lin.<b>A comparison of methods for multiclass support vector machins</b>.<i>IEEE Transactions on Neural Networks</i>, 13(2), March 2002.<p><a name='Jollife86'><tt>[Jollife86]</tt>I.T.Jollife.<i>Principal Component Analysis</i>.Springer-Verlag, New York, 1986.<p><a name='Keerthi00'><tt>[Keerthi00]</tt>S.S.Keerthi, S.K.Shevade, C.Bhattacharya, and K.R.K.Murthy.<b>A fast iterative nearest point algorithm for support vector machine classifier design</b>.<i>IEEE Transactions on Neural Networks</i>, 11(1):124--136, January 2000.<p><a name='Kim04'><tt>[Kim04]</tt>KimKwang, In, FranzMatthias, O., and Sch\"olkopfBernhard.<b>Kernel hebbian algorithm for single-fram super-resolution</b>.In LeonardisAle\v{s} and BischofHorst, editors, <i>Statisical Learning in Computer Vision, ECCV Workshop</i>. Springer, May 2004.<p><a name='Kwok03'><tt>[Kwok03]</tt>J.T.Kwok and I.W.Tsang.<b>The pre-image problem in kernel methods</b>.In <i>Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003)</i>, pages 408--415, Washington, D.C., USA, August 2003.<p><a name='LeCun89'><tt>[LeCun89]</tt>Y.LeCun, B.Boser, J.S.Denker, D.Henderson, R.E.Howard, W.Hubbard, and L.JJackel.<b>Backpropagation applied to handwritten zip code recognition</b>.<i>Neural Computation</i>, 1:541--551, 1989.<p><a name='McLachlan97'><tt>[McLachlan97]</tt>G.McLachlan and T.Krishnan.<i>The EM Algorithm and Extensions</i>.John Wiley \& Sons, New York, 1997.<p><a name='Mika99a'><tt>[Mika99a]</tt>S.Mika, G.R\"atsch, J.Weston, B.Sch\"olkpf, and K.M\"uller.<b>Fisher discriminant analysis with kernel</b>.In Y.H.Hu, J.Larsen, and S.Wilson, E.~Douglas, editors, <i>Neural Networks for Signal Processing</i>, pages 41--48. IEEE, 1999.<p><a name='Mika99b'><tt>[Mika99b]</tt>S.Mika, B.Sch\"olkopf, A.Smola, K.R.M\"uller, M.Scholz, and G.R\"atsch.<b>Kernel pca and de-noising in feature spaces</b>.In M.S.Kearns, S.A.Solla, and D.A.Cohn, editors, <i>Advances in Neural Information Processing Systems 11</i>, pages 536 -- 542, Cambridge, MA, 1999. MIT Press.<p><a name='Nabney02'><tt>[Nabney02]</tt>I.T.Nabney.<i>NETLAB~: algorithms for pattern recognition</i>.Advances in pattern recognition. Springer, London, 2002.<p><a name='Platt99a'><tt>[Platt99a]</tt>J.Platt.<b>Probabilities for sv machines</b>.In A.J.Smola, P.J.Bartlett, B.Scholkopf, and D.Schuurmans, editors, <i>Advances in Large Margin Classifiers (Neural Information Processing Series)</i>. MIT Press, 2000.<p><a name='Platt98'><tt>[Platt98]</tt>J.C.Platt.<b>Sequential minimal optimizer: A fast algorithm for training support vector machines</b>.Technical Report MSR-TR-98-14, Microsoft Research, Redmond, 1998.<a href='http://http://www.research.microsoft.com/~jplatt/smo.html.'>[On line]</a>.<p><a name='Riply94'><tt>[Riply94]</tt>B.D.Riply.<b>Neural networks and related methods for classification (with discusion)</b>.<i>J. Royal Statistical Soc. Series B</i>, 56:409--456, 1994.<p><a name='Schles68'><tt>[Schles68]</tt>M.I.Schlesinger.<b>{A} connection between learning and self-learning in the pattern recognition (in {R}ussian)</b>.<i>Kibernetika</i>, 2:81--88, 1968.<p><a name='SH10'><tt>[SH10]</tt>M.I.Schlesinger and V.Hlav{\'a}{\v c}.<i>Ten lectures on statistical and structural pattern recognition</i>.Kluwer Academic Publishers, 2002.<p><a name='Schol99'><tt>[Schol99]</tt>B.Sch\"olkopf, C.Burges, and A.J.Smola.<i>Advances in Kernel Methods -- Support Vector Learning</i>.MIT Press, Cambridge, 1999.<p><a name='Schol98a'><tt>[Schol98a]</tt>B.Sch{\"o}lkopf, P.Knirsch, and C.Smola, A.~Burges.<b>Fast approximation of support vector kernel expansions, and an interpretation of clustering as approximation in feature spaces</b>.In P.Levi, M.Schanz, R.J.Ahler, and F.May, editors, <i>Mustererkennung 1998-20. DAGM.</i>, pages 124--132, Berlin, Germany, 1998. Springer-Verlag.<p><a name='Schol98b'><tt>[Schol98b]</tt>B.Scholkopf, A.Smola, and K.R.Muller.<b>Nonlinear component analysis as a kernel eigenvalue problem</b>.<i>Neural Computation</i>, 10:1299--1319, 1998.<p><a name='Schol02'><tt>[Schol02]</tt>B.Sch{\"o}lkopf and A.J.Smola.<i>Learning with Kernels</i>.The MIT Press, MA, 2002.<p><a name='Vapnik95'><tt>[Vapnik95]</tt>V.Vapnik.<i>The nature of statistical learning theory</i>.Springer Verlag, 1995.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -