📄 showobjectmodel.m
字号:
% This script uses the parameters of the boosted detector and visualizes
% a part based model of the object by ploting the features used by the
% classifier.
clear all
parameters
% Load detector parameters:
load (dataFile)
NweakClassifiers = length(data.detector);
object = zeros(normalizedObjectSize+40);
counts = zeros(normalizedObjectSize+40);
[no mo] = size(object); cy = fix(no/2); cx = fix(mo/2);
figure
for j = 1:NweakClassifiers
f = data.detector(j+46).featureNdx;
feat = data.dictionary.filter{f};
part = data.dictionary.patch{f};
gx = data.dictionary.location{f}{1};
gy = data.dictionary.location{f}{2};
[foo, x] = max(gx);
[foo, y] = max(gy);
[n m] = size(part); n = (n-1)/2; m = (m-1)/2;
x = (length(gx)+1)/2 - x + cx;
y = (length(gy)+1)/2 - y + cy;
part = part-min(part(:));
part = part/max(part(:));
object(y-n:y+n, x-m:x+m) = object(y-n:y+n, x-m:x+m) + part;
counts(y-n:y+n, x-m:x+m) = counts(y-n:y+n, x-m:x+m) + 1;
if j < 19
location = zeros(normalizedObjectSize+40);
location (y,x) = 1; location = conv2(locSigma, locSigma, location, 'same');
subplot(6,9,3*j-2);
imagesc(zeroPad(feat, [11 11])); axis('equal'); colormap(gray(256)); axis('off'); axis('tight')
subplot(6,9,3*j-1);
imagesc(part); axis('equal'); colormap(gray(256)); axis('off'); axis('tight')
subplot(6,9,3*j);
imagesc(location); axis('equal'); colormap(gray(256)); axis('off'); axis('tight')
end
end
counts(counts==0)=1;
Hfig = figure;
imagesc(object ./ counts); axis('equal')
colormap(gray(256))
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -