📄 sysdefs.h
字号:
/*************************************************************************** ** PROJECT : MIPS port for uC/OS-II ** ** MODULE : SYSDEFS.h ** ** AUTHOR : Michael Anburaj ** URL : http://geocities.com/michaelanburaj/ ** EMAIL: michaelanburaj@hotmail.com ** ** PROCESSOR : MIPS 4Kc (32 bit RISC) - ATLAS board ** ** TOOL-CHAIN : SDE & Cygnus ** ** DESCRIPTION : ** System definitions header file. ** ***************************************************************************/#ifndef __SYSDEFS_H__#define __SYSDEFS_H__/* ********************************************************************* *//* Module configuration *//* ********************************************************************* *//* Interface macro & data definition */#ifdef _ASSEMBLER_/******** ASSEMBLER SPECIFIC DEFINITIONS ********/#ifdef __ghs__#define ALIGN(x) .##align (1 << (x))#else#define ALIGN(x) .##align (x)#endif#ifdef __ghs__#define SET_MIPS3()#define SET_MIPS0()#define SET_PUSH()#define SET_POP()#else#define SET_MIPS3() .##set mips3#define SET_MIPS0() .##set mips0#define SET_PUSH() .##set push#define SET_POP() .##set pop#endif/* Different assemblers have different requirements for how to * indicate that the next section is bss : * * Some use : .bss * Others use : .section bss * * We select which to use based on _BSS_OLD_, which may be defined * in makefile. */#ifdef _BSS_OLD_#define BSS .##section bss#else#define BSS .##bss#endif#define LEAF(name)\ .##text;\ .##globl name;\ .##ent name;\name:#define SLEAF(name)\ .##text;\ .##ent name;\name:#ifdef __ghs__#define END(name)\ .##end name#else#define END(name)\ .##size name,.-name;\ .##end name#endif#define EXTERN(name)#else#define U64 unsigned long long#define U32 unsigned int#define U16 unsigned short#define U8 unsigned char#define S64 signed long long#define S32 int#define S16 short int#define S8 signed char#define bool U8#ifndef _SIZE_T_#define _SIZE_T_#ifdef __ghs__ typedef unsigned int size_t;#else typedef unsigned long size_t;#endif#endif/* Sets the result on bPort */#define BIT_SET(bPort,bBitMask) (bPort |= bBitMask)#define BIT_CLR(bPort,bBitMask) (bPort &= ~bBitMask)/* Returns the result */#define GET_BIT_SET(bPort,bBitMask) (bPort | bBitMask)#define GET_BIT_CLR(bPort,bBitMask) (bPort & ~bBitMask)/* Returns 0 if the condition is False & a non-zero value if it is True */#define TEST_BIT_SET(bPort,bBitMask) (bPort & bBitMask)#define TEST_BIT_CLR(bPort,bBitMask) ((~bPort) & bBitMask)/* Split union definitions */typedef union tunSU16{ U16 hwHW; struct tst2U8 { U8 bB0; U8 bB1; }st2U8;}tunSU16;typedef union tunSU32{ U32 wW; struct tst2U16 { U16 hwHW0; U16 hwHW1; }st2U16; struct tst4U8 { U8 bB0; U8 bB1; U8 bB2; U8 bB3; }st4U8;}tunSU32;#endif /* #ifdef _ASSEMBLER_ *//******** DEFINITIONS FOR BOTH ASSEMBLER AND C ********/#define NO_ERR 0x00000000 /* operation completed successfully */#define ERR 0xffffffff /* operation completed not successfully */#define False 0#define True !False#define NULL ((void *)0)#define MIN(x,y) ((x) < (y) ? (x) : (y))#define MAX(x,y) ((x) > (y) ? (x) : (y))#define MAXUINT(w) (\ ((w) == sizeof(U8)) ? 0xFFU :\ ((w) == sizeof(U16)) ? 0xFFFFU :\ ((w) == sizeof(U32)) ? 0xFFFFFFFFU : 0\ )#define MAXINT(w) (\ ((w) == sizeof(S8)) ? 0x7F :\ ((w) == sizeof(S16)) ? 0x7FFF :\ ((w) == sizeof(S32)) ? 0x7FFFFFFF : 0\ ) #define MSK(n) ((1 << (n)) - 1)#define KUSEG_MSK 0x80000000#define KSEG_MSK 0xE0000000#define KUSEGBASE 0x00000000#define KSEG0BASE 0x80000000#define KSEG1BASE 0xA0000000#define KSSEGBASE 0xC0000000#define KSEG3BASE 0xE0000000/* Below macros perform the following functions : * * KSEG0 : Converts KSEG0/1 or physical addr (below 0.5GB) to KSEG0. * KSEG1 : Converts KSEG0/1 or physical addr (below 0.5GB) to KSEG1. * PHYS : Converts KSEG0/1 or physical addr (below 0.5GB) to physical address. * KSSEG : Not relevant for converting, but used for determining range. * KSEG3 : Not relevant for converting, but used for determining range. * KUSEG : Not relevant for converting, but used for determining range. * KSEG0A : Same as KSEG0 but operates on register rather than constant. * KSEG1A : Same as KSEG1 but operates on register rather than constant. * PHYSA : Same as PHYS but operates on register rather than constant. * CACHED : Alias for KSEG0 macro . * (Note that KSEG0 cache attribute is determined by K0 * field of Config register, but this is typically cached). * UNCACHED : Alias for KSEG1 macro . */#ifdef _ASSEMBLER_#define KSEG0(addr) (((addr) & ~KSEG_MSK) | KSEG0BASE)#define KSEG1(addr) (((addr) & ~KSEG_MSK) | KSEG1BASE)#define KSSEG(addr) (((addr) & ~KSEG_MSK) | KSSEGBASE)#define KSEG3(addr) (((addr) & ~KSEG_MSK) | KSEG3BASE)#define KUSEG(addr) (((addr) & ~KUSEG_MSK) | KUSEGBASE)#define PHYS(addr) ( (addr) & ~KSEG_MSK)#define KSEG0A(reg) and reg, ~KSEG_MSK; or reg, KSEG0BASE#define KSEG1A(reg) and reg, ~KSEG_MSK; or reg, KSEG1BASE#define PHYSA(reg) and reg, ~KSEG_MSK#else#define KSEG0(addr) (((U32)(addr) & ~KSEG_MSK) | KSEG0BASE)#define KSEG1(addr) (((U32)(addr) & ~KSEG_MSK) | KSEG1BASE)#define KSSEG(addr) (((U32)(addr) & ~KSEG_MSK) | KSSEGBASE)#define KSEG3(addr) (((U32)(addr) & ~KSEG_MSK) | KSEG3BASE)#define KUSEG(addr) (((U32)(addr) & ~KUSEG_MSK) | KUSEGBASE)#define PHYS(addr) ((U32)(addr) & ~KSEG_MSK)#endif#define CACHED(addr) KSEG0(addr)#define UNCACHED(addr) KSEG1(addr)#ifdef _ASSEMBLER_/* Macroes to access variables at constant addresses * Compensates for signed 16 bit displacement * Typical use: li a0, HIKSEG1(ATLAS_ASCIIWORD) * sw v1, LO_OFFS(ATLAS_ASCIIWORD)(a0) */#define HIKSEG0(addr) ((KSEG0(addr) + 0x8000) & 0xffff0000)#define HIKSEG1(addr) ((KSEG1(addr) + 0x8000) & 0xffff0000)#define HI_PART(addr) (((addr) + 0x8000) & 0xffff0000)#define LO_OFFS(addr) ((addr) & 0xffff)#endif/* Most/Least significant 32 bit from 64 bit double word */#define HI32(data64) ((U32)(data64 >> 32))#define LO32(data64) ((U32)(data64 & 0xFFFFFFFF))#define REG8( addr ) (*(volatile U8 *) (addr))#define REG16( addr ) (*(volatile U16 *)(addr))#define REG32( addr ) (*(volatile U32 *)(addr))#define REG64( addr ) (*(volatile U64 *)(addr))/* Register field mapping */#define REGFIELD(reg, rfld) (((reg) & rfld##_MSK) >> rfld##_SHF)/* absolute register address, access */#define REGA(addr) REG32(addr)/* physical register address, access: base address + offsett */#define REGP(base,phys) REG32( (U32)(base) + (phys) )/* relative register address, access: base address + offsett */#define REG(base,offs) REG32( (U32)(base) + offs##_##OFS )/* relative register address, access: base address + offsett */#define REG_8(base,offs) REG8( (U32)(base) + offs##_##OFS )/* relative register address, access: base address + offsett */#define REG_16(base,offs) REG16( (U32)(base) + offs##_##OFS )/* relative register address, access: base address + offsett */#define REG_64(base,offs) REG64( (U32)(base) + offs##_##OFS )/************************************** * Macroes not used by YAMON any more * (kept for backwards compatibility) *//* register read field */#define REGARD(addr,fld) ((REGA(addr) & addr##_##fld##_##MSK) \ >> addr##_##fld##_##SHF)/* register write numeric field value */#define REGAWRI(addr,fld,intval) ((REGA(addr) & ~(addr##_##fld##_##MSK))\ | ((intval) << addr##_##fld##_##SHF))/* register write enumerated field value */#define REGAWRE(addr,fld,enumval) ((REGA(addr) & ~(addr##_##fld##_##MSK))\ | ((addr##_##fld##_##enumval) << addr##_##fld##_##SHF))/* Examples: * * exccode = REGARD(CPU_CAUSE,EXC); * * REGA(SDR_CONTROL) = REGAWRI(OSG_CONTROL,TMO,17) * | REGAWRE(OSG_CONTROL,DTYPE,PC1); *//* register read field */#define REGRD(base,offs,fld) ((REG(base,offs) & offs##_##fld##_##MSK) \ >> offs##_##fld##_##SHF)/* register write numeric field value */#define REGWRI(base,offs,fld,intval)((REG(base,offs)& ~(offs##_##fld##_##MSK))\ | (((intval) << offs##_##fld##_##SHF) & offs##_##fld##_##MSK))/* register write enumerated field value */#define REGWRE(base,offs,fld,enumval)((REG(base,offs) & ~(offs##_##fld##_##MSK))\ | ((offs##_##fld##_##enumval) << offs##_##fld##_##SHF))/* physical register read field */#define REGPRD(base,phys,fld) ((REGP(base,phys) & phys##_##fld##_##MSK) \ >> phys##_##fld##_##SHF)/* physical register write numeric field value */#define REGPWRI(base,phys,fld,intval)((REGP(base,phys)& ~(phys##_##fld##_##MSK))\ | ((intval) << phys##_##fld##_##SHF))/* physical register write enumerated field value */#define REGPWRE(base,phys,fld,enumval)((REGP(base,phys) & ~(phys##_##fld##_##MSK))\ | ((phys##_##fld##_##enumval) << phys##_##fld##_##SHF))/* * End of macroes not used by YAMON any more *********************************************//* Endian related macros */#define SWAP_BYTEADDR32( addr ) ( (addr) ^ 0x3 )#define SWAP_U16ADDR32( addr ) ( (addr) ^ 0x2 )/* Set byte address to little endian format */#ifdef EL#define SWAP_BYTEADDR_EL(addr) addr#else#define SWAP_BYTEADDR_EL(addr) SWAP_BYTEADDR32( addr )#endif/* Set byte address to big endian format */#ifdef EB#define SWAP_BYTEADDR_EB(addr) addr#else#define SWAP_BYTEADDR_EB(addr) SWAP_BYTEADDR32( addr )#endif/* Set U16 address to little endian format */#ifdef EL#define SWAP_U16ADDR_EL(addr) addr#else#define SWAP_U16ADDR_EL(addr) SWAP_U16ADDR32( addr )#endif/* Set U16 address to big endian format */#ifdef EB#define SWAP_U16ADDR_EB(addr) addr#else#define SWAP_U16ADDR_EB(addr) SWAP_U16ADDR32( addr )#endif#ifdef EL#define REGW32LE(addr, data) REG32(addr) = (data)#define REGR32LE(addr, data) (data) = REG32(addr)#else#define REGW32LE(addr, data) REG32(addr) = SWAPEND32(data)#define REGR32LE(addr, data) (data) = REG32(addr), (data) = SWAPEND32(data)#endif/* Set of 'LE'-macros, convert by BE: */#ifdef EL#define CPU_TO_LE32( value ) (value)#define LE32_TO_CPU( value ) (value)#define CPU_TO_LE16( value ) (value)#define LE16_TO_CPU( value ) (value)#else#define CPU_TO_LE32( value ) ( ( ((U32)value) << 24) | \ ((0x0000FF00UL & ((U32)value)) << 8) | \ ((0x00FF0000UL & ((U32)value)) >> 8) | \ ( ((U32)value) >> 24) )#define LE32_TO_CPU( value ) CPU_TO_LE32( value )#define CPU_TO_LE16( value ) ( ((U16)(((U16)value) << 8)) | \ ((U16)(((U16)value) >> 8)) )#define LE16_TO_CPU( value ) CPU_TO_LE16( value )#endif/* Set of 'BE'-macros, convert by LE: */#ifdef EB#define CPU_TO_BE32( value ) (value)#define BE32_TO_CPU( value ) (value)#define CPU_TO_BE16( value ) (value)#define BE16_TO_CPU( value ) (value)#else#define CPU_TO_BE32( value ) ( ( ((U32)value) << 24) | \ ((0x0000FF00UL & ((U32)value)) << 8) | \ ((0x00FF0000UL & ((U32)value)) >> 8) | \ ( ((U32)value) >> 24) )#define BE32_TO_CPU( value ) CPU_TO_BE32( value )#define CPU_TO_BE16( value ) ( ((U16)(((U16)value) << 8)) | \ ((U16)(((U16)value) >> 8)) )#define BE16_TO_CPU( value ) CPU_TO_BE16( value )#endif/* Control characters */#define CTRL_A ('A'-0x40)#define CTRL_B ('B'-0x40)#define CTRL_C ('C'-0x40)#define CTRL_D ('D'-0x40)#define CTRL_E ('E'-0x40)#define CTRL_F ('F'-0x40)#define CTRL_H ('H'-0x40)#define CTRL_K ('K'-0x40)#define CTRL_N ('N'-0x40)#define CTRL_P ('P'-0x40)#define CTRL_U ('U'-0x40)#define BACKSPACE 0x08#define DEL 0x7F#define TAB 0x09#define CR 0x0D /* Enter Key */#define LF 0x0A#define ESC 0x1B#define SP 0x20#define CSI 0x9B/* DEF2STR(x) converts #define symbol to string */#define DEF2STR1(x) #x#define DEF2STR(x) DEF2STR1(x)/* ********************************************************************* *//* Interface function definition *//* ********************************************************************* */#endif /*__SYSDEFS_H__*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -