📄 pl010ser.c
字号:
// Read the byte
cRXChar = INB(pSerAMBA, pUART_DR);
// The UART error status data doesn't generate an interrupt (hence we don't
// get an INTR_LINE on the Integrator. Instead, we must read the status
// after reading data from the FIFO. We'll call SL_LineIntr ourselves, as
// though we received a line status interrupt. Any error state read will be
// sent back to the MDD through the callback provided.
SL_LineIntr(pHead);
// But we may want to discard it
if (pSer16550->dcb.fDsrSensitivity && !(INB(pSerAMBA, pUART_FR) & AMBA_UARTFR_DSR))
{
// Do nothing - byte gets discarded
DEBUGMSG (ZONE_FLOW,
(TEXT("Dropping byte because DSR is low\r\n")));
} else if (!cRXChar && fNull) {
// Do nothing - byte gets discarded
DEBUGMSG (ZONE_FLOW| ZONE_WARN,
(TEXT("Dropping NULL byte due to fNull\r\n")));
} else {
// Do character replacement if parity error detected.
if ( fReplaceparityErrors && (INB(pSerAMBA, pUART_RSR) & AMBA_UARTRSR_PE) )
{
cRXChar = pSer16550->dcb.ErrorChar;
} else {
// See if we need to generate an EV_RXFLAG for the received char.
if ( cRXChar == cEvtChar )
fRXFlag = TRUE;
}
// Finally, we can get byte, update status and save.
*pRxBuffer++ = cRXChar;
(*pBufflen)++;
--TargetRoom;
}
} else {
// We read all chars, so we're done
break;
}
}
}
except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
// just exit
}
// if we saw one (or more) EVT chars, then generate an event
if ( fRXFlag )
pSer16550->EventCallback( pSer16550->pMddHead, EV_RXFLAG );
if ( pSer16550->DroppedBytes )
DEBUGMSG (ZONE_WARN, (TEXT("Rx drop %d.\r\n"),
pSer16550->DroppedBytes));
DEBUGMSG (0, (TEXT("-GetBytes - rx'ed %d, dropped %d.\r\n"),
*pBufflen,
pSer16550->DroppedBytes));
RetVal = pSer16550->DroppedBytes;
pSer16550->DroppedBytes = 0;
return(RetVal);
}
// @doc OEM
// @func ULONG | SL_PutBytes | This routine is called from the MDD
// in order to write a stream of data to the device. (Obsolete)
//
// @rdesc Always returns 0
//
ULONG
SL_PutBytes(
PVOID pHead, // @parm PVOID returned by HWInit.
PUCHAR pSrc, // @parm Pointer to bytes to be sent.
ULONG NumberOfBytes, // @parm Number of bytes to be sent.
PULONG pBytesSent // @parm Pointer to actual number of bytes put.
)
{
PSER16550_INFO pSer16550 = &(((PSER_INFO)pHead)->ser16550);
PAMBA_UART_INFO pSerAMBA = &(((PSER_INFO)pHead)->serAMBA);
UCHAR byteCount = 0;
UCHAR ucCR;
DEBUGMSG (ZONE_WRITE, (TEXT("+PutBytes - Len %d.\r\n"),
NumberOfBytes));
pSer16550->CommErrors &= ~CE_TXFULL;
*pBytesSent = 0;
// If CTS flow control is desired, check cts. If clear, don't send,
// but loop. When CTS comes back on, the OtherInt routine will
// detect this and re-enable TX interrupts (causing Flushdone).
// For finest granularity, we would check this in the loop below,
// but for speed, I check it here (up to 8 xmit characters before
// we actually flow off.
if ( pSer16550->dcb.fOutxCtsFlow ) {
// ReadMSR( pHWHead );
// We don't need to explicitly read the MSR, since we always enable
// IER_MS, which ensures that we will get an interrupt and read
// the MSR whenever CTS, DSR, TERI, or DCD change.
if (!(INB(pSerAMBA, pUART_FR) & AMBA_UARTFR_CTS))
{
unsigned char byte = 0;
DEBUGMSG (ZONE_WRITE|ZONE_FLOW,
(TEXT("PutBytes, flowed off via CTS\n") ) );
pSer16550->CTSFlowOff = TRUE; // Record flowed off state
EnterCriticalSection(&(pSer16550->RegCritSec));
try
{
byte = INB(pSerAMBA, pUART_CR);
OUTB(pSerAMBA, pUART_CR, byte & ~AMBA_UARTIIR_TIS); // disable TX interrupts while flowed off
}
except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
// Just ignore it, we'll eventually fall out of here
}
LeaveCriticalSection(&(pSer16550->RegCritSec));
// We could return a positive value here, which would
// cause the MDD to periodically check the flow control
// status. However, we don't need to since we know that
// the DCTS interrupt will cause the MDD to call us, and we
// will subsequently fake a TX interrupt to the MDD, causing
// him to call back into PutBytes.
return(0);
}
}
// Same thing applies for DSR
if ( pSer16550->dcb.fOutxDsrFlow ) {
// ReadMSR( pHWHead );
// We don't need to explicitly read the MSR, since we always enable
// IER_MS, which ensures that we will get an interrupt and read
// the MSR whenever CTS, DSR, TERI, or DCD change.
if (!(INB(pSerAMBA, pUART_FR) & AMBA_UARTFR_DSR))
{
DEBUGMSG (ZONE_WRITE|ZONE_FLOW,
(TEXT("PutBytes, flowed off via DSR\n") ) );
pSer16550->DSRFlowOff = TRUE; // Record flowed off state
EnterCriticalSection(&(pSer16550->RegCritSec));
try
{
ucCR = CR_NORMAL_INTS;
if(((PSER_INFO)pHead)->fIRMode)
{
ucCR |= CR_SIREN;
}
OUTB(pSerAMBA, pUART_CR, ucCR ); // disable TX interrupts while flowed off
}
except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
// Just ignore it, we'll eventually fall out of here
}
LeaveCriticalSection(&(pSer16550->RegCritSec));
// See the comment above above positive return codes.
return(0);
}
}
DEBUGMSG (ZONE_WRITE, (TEXT("PutBytes wait for CritSec %x.\r\n"),
&(pSer16550->TransmitCritSec)));
EnterCriticalSection(&(pSer16550->TransmitCritSec));
DEBUGMSG (ZONE_WRITE, (TEXT("PutBytes got CritSec %x.\r\n"),
&(pSer16550->TransmitCritSec)));
// If the Tx FIFO is empty and we've enabled the FIFO, we know how many
// bytes we can write quickly...
//
if ((INB(pSerAMBA, pUART_FR) & AMBA_UARTFR_TXFE))
{
if (INB(pSerAMBA, pUART_LCR_H) & AMBA_UARTLCR_H_FEN)
byteCount = SERIAL_FIFO_DEPTH;
else
byteCount = 1;
DEBUGMSG (ZONE_WRITE | ZONE_THREAD,
(TEXT("Put Bytes - Write max of %d bytes\r\n"),
byteCount));
EnterCriticalSection(&(pSer16550->RegCritSec));
try
{
for ( ; NumberOfBytes && byteCount; NumberOfBytes--, byteCount-- )
{
DEBUGLED( ZONE_WRITE, (1, 0x10200000 | *pSrc) );
OUTB(pSerAMBA, pUART_DR, *pSrc);
++pSrc;
(*pBytesSent)++;
}
}
except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
// Just ignore it, we'll eventually fall out of here
}
LeaveCriticalSection(&(pSer16550->RegCritSec));
}
// Enable xmit intr. We need to do this no matter what,
// since the MDD relies on one final interrupt before
// returning to the application.
EnterCriticalSection(&(pSer16550->RegCritSec));
try
{
ucCR = CR_NORMAL_INTS | AMBA_UARTCR_TIE;
if(((PSER_INFO)pHead)->fIRMode)
{
ucCR |= CR_SIREN;
}
OUTB(pSerAMBA, pUART_CR, ucCR ); // disable TX interrupts while flowed off
}
except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
// Hmm, not sure what would cause this. Lets just tell
// the MDD to go away until we get another TX
// interrupt.
}
LeaveCriticalSection(&(pSer16550->RegCritSec));
LeaveCriticalSection(&(pSer16550->TransmitCritSec));
DEBUGMSG (ZONE_WRITE, (TEXT("PutBytes released CritSec %x.\r\n"),
&(pSer16550->TransmitCritSec)));
DEBUGMSG (ZONE_WRITE, (TEXT("-PutBytes - sent %d.\r\n"),
*pBytesSent));
return(0);
}
//
// @doc OEM
// @func ULONG | SL_TXIntr | This routine is called from the old MDD
// whenever INTR_TX is returned by SL_GetInterruptType (Obselete)
//
// @rdesc None
//
VOID
SL_TxIntr(
PVOID pHead // Hardware Head
)
{
PSER16550_INFO pSer16550 = &(((PSER_INFO)pHead)->ser16550);
PAMBA_UART_INFO pSerAMBA = &(((PSER_INFO)pHead)->serAMBA);
UCHAR ucCR;
DEBUGMSG (0,
(TEXT("+SL_TxIntr 0x%X\r\n"), pHead));
// Disable xmit intr. Most 16550s will keep hammering
// us with xmit interrupts if we don't turn them off
// Whoever gets the FlushDone will then need to turn
// TX Ints back on if needed.
EnterCriticalSection(&(pSer16550->RegCritSec));
try
{
ucCR = CR_NORMAL_INTS;
if(((PSER_INFO)pHead)->fIRMode)
{
ucCR |= CR_SIREN;
}
OUTB(pSerAMBA, pUART_CR, ucCR );
}
except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
// Do nothing. The worst case is that this was a fluke,
// and a TX Intr will come right back at us and we will
// resume transmission.
}
LeaveCriticalSection(&(pSer16550->RegCritSec));
// Let the putbytes routine know he can continue
PulseEvent(pSer16550->FlushDone);
DEBUGMSG (0,
(TEXT("+SL_TxIntr 0x%X\r\n"), pHead));
}
//
// @doc OEM
// @func ULONG | SL_TXIntrEx | This routine is called from the new MDD
// whenever INTR_TX is returned by SL_GetInterruptType
//
// @rdesc None
//
VOID
SL_TxIntrEx(
PVOID pHead, // Hardware Head
PUCHAR pTxBuffer, // @parm Pointer to receive buffer
ULONG *pBufflen // @parm In = max bytes to transmit, out = bytes transmitted
)
{
PSER16550_INFO pSer16550 = &(((PSER_INFO)pHead)->ser16550);
PAMBA_UART_INFO pSerAMBA = &(((PSER_INFO)pHead)->serAMBA);
UCHAR byteCount = 0;
ULONG NumberOfBytes = *pBufflen;
UCHAR ucCR;
unsigned char byte;
DEBUGMSG (ZONE_THREAD, (TEXT("Transmit Event\r\n")));
DEBUGMSG (ZONE_WRITE,
(TEXT("+SL_TxIntrEx 0x%X, Len %d\r\n"), pHead, *pBufflen));
// We may be done sending. If so, just disable the TX interrupts
// and return to the MDD.
if( ! *pBufflen ) {
DEBUGMSG (ZONE_WRITE, (TEXT("SL_TxIntrEx: Disable INTR_TX.\r\n")));
ucCR = CR_NORMAL_INTS;
if(((PSER_INFO)pHead)->fIRMode)
{
ucCR |= CR_SIREN;
}
OUTB(pSerAMBA, pUART_CR, ucCR );
return;
}
*pBufflen = 0; // In case we don't send anything below.
// Disable xmit intr. Most 16550s will keep hammering
// us with xmit interrupts if we don't turn them off
// Whoever gets the FlushDone will then need to turn
// TX Ints back on if needed.
EnterCriticalSection(&(pSer16550->RegCritSec));
try {
// Need to signal FlushDone for XmitComChar
PulseEvent(pSer16550->FlushDone);
pSer16550->CommErrors &= ~CE_TXFULL;
// If CTS flow control is desired, check cts. If clear, don't send,
// but loop. When CTS comes back on, the OtherInt routine will
// detect this and re-enable TX interrupts (causing Flushdone).
// For finest granularity, we would check this in the loop below,
// but for speed, I check it here (up to 8 xmit characters before
// we actually flow off.
if ( pSer16550->dcb.fOutxCtsFlow ) {
// ReadMSR( pHWHead );
// We don't need to explicitly read the MSR, since we always enable
// IER_MS, which ensures that we will get an interrupt and read
// the MSR whenever CTS, DSR, TERI, or DCD change.
if (!(INB(pSerAMBA, pUART_FR) & AMBA_UARTFR_CTS))
{
byte = 0;
DEBUGMSG (ZONE_WRITE|ZONE_FLOW,
(TEXT("SL_TxIntrEx, flowed off via CTS\n") ) );
pSer16550->CTSFlowOff = TRUE; // Record flowed off state
byte = INB(pSerAMBA, pUART_CR);
OUTB(pSerAMBA, pUART_CR, byte & ~AMBA_UARTCR_TIE); // disable TX interrupts while flowed off
// We could return a positive value here, which would
// cause the MDD to periodically check the flow control
// status. However, we don't need to since we know that
// the DCTS interrupt will cause the MDD to call us, and we
// will subsequently fake a TX interrupt to the MDD, causing
// him to call back into PutBytes.
LeaveCriticalSection(&(pSer16550->RegCritSec));
return;
}
}
// Same thing applies for DSR
if ( pSer16550->dcb.fOutxDsrFlow ) {
// ReadMSR( pHWHead );
// We don't need to explicitly read the MSR, since we always enable
// IER_MS, which ensures that we will get an interrupt and read
// the MSR whenever CTS, DSR, TERI, or DCD change.
if (!(INB(pSerAMBA, pUART_FR) & AMBA_UARTFR_DSR))
{
DEBUGMSG (ZONE_WRITE|ZONE_FLOW,
(TEXT("SL_TxIntrEx, flowed off via DSR\n") ) );
pSer16550->DSRFlowOff = TRUE; // Record flowed off state
byte = CR_NORMAL_INTS;
if(((PSER_INFO)pHead)->fIRMode)
{
byte |= CR_SIREN;
}
OUTB(pSerAMBA, pUART_CR, byte ); // disable TX interrupts while flowed off
// See the comment above above positive return codes.
LeaveCriticalSection(&(pSer16550->RegCritSec));
return;
}
}
}
except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
// Do nothing. The worst case is that this was a fluke,
// and a TX Intr will come right back at us and we will
// resume transmission.
}
LeaveCriticalSection(&(pSer16550->RegCritSec));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -