⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fdlibm.h

📁 Newlib 嵌入式 C库 标准实现代码
💻 H
字号:
/* @(#)fdlibm.h 5.1 93/09/24 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* REDHAT LOCAL: Include files.  */#include <math.h>#include <sys/types.h>#include <machine/ieeefp.h>/* REDHAT LOCAL: Default to XOPEN_MODE.  */#define _XOPEN_MODE/* Most routines need to check whether a float is finite, infinite, or not a   number, and many need to know whether the result of an operation will   overflow.  These conditions depend on whether the largest exponent is   used for NaNs & infinities, or whether it's used for finite numbers.  The   macros below wrap up that kind of information:   FLT_UWORD_IS_FINITE(X)	True if a positive float with bitmask X is finite.   FLT_UWORD_IS_NAN(X)	True if a positive float with bitmask X is not a number.   FLT_UWORD_IS_INFINITE(X)	True if a positive float with bitmask X is +infinity.   FLT_UWORD_MAX	The bitmask of FLT_MAX.   FLT_UWORD_HALF_MAX	The bitmask of FLT_MAX/2.   FLT_UWORD_EXP_MAX	The bitmask of the largest finite exponent (129 if the largest	exponent is used for finite numbers, 128 otherwise).   FLT_UWORD_LOG_MAX	The bitmask of log(FLT_MAX), rounded down.  This value is the largest	input that can be passed to exp() without producing overflow.   FLT_UWORD_LOG_2MAX	The bitmask of log(2*FLT_MAX), rounded down.  This value is the	largest input than can be passed to cosh() without producing	overflow.   FLT_LARGEST_EXP	The largest biased exponent that can be used for finite numbers	(255 if the largest exponent is used for finite numbers, 254	otherwise) */#ifdef _FLT_LARGEST_EXPONENT_IS_NORMAL#define FLT_UWORD_IS_FINITE(x) 1#define FLT_UWORD_IS_NAN(x) 0#define FLT_UWORD_IS_INFINITE(x) 0#define FLT_UWORD_MAX 0x7fffffff#define FLT_UWORD_EXP_MAX 0x43010000#define FLT_UWORD_LOG_MAX 0x42b2d4fc#define FLT_UWORD_LOG_2MAX 0x42b437e0#define HUGE ((float)0X1.FFFFFEP128)#else#define FLT_UWORD_IS_FINITE(x) ((x)<0x7f800000L)#define FLT_UWORD_IS_NAN(x) ((x)>0x7f800000L)#define FLT_UWORD_IS_INFINITE(x) ((x)==0x7f800000L)#define FLT_UWORD_MAX 0x7f7fffffL#define FLT_UWORD_EXP_MAX 0x43000000#define FLT_UWORD_LOG_MAX 0x42b17217#define FLT_UWORD_LOG_2MAX 0x42b2d4fc#define HUGE ((float)3.40282346638528860e+38)#endif#define FLT_UWORD_HALF_MAX (FLT_UWORD_MAX-(1L<<23))#define FLT_LARGEST_EXP (FLT_UWORD_MAX>>23)/* Many routines check for zero and subnormal numbers.  Such things depend   on whether the target supports denormals or not:   FLT_UWORD_IS_ZERO(X)	True if a positive float with bitmask X is +0.	Without denormals,	any float with a zero exponent is a +0 representation.	With	denormals, the only +0 representation is a 0 bitmask.   FLT_UWORD_IS_SUBNORMAL(X)	True if a non-zero positive float with bitmask X is subnormal.	(Routines should check for zeros first.)   FLT_UWORD_MIN	The bitmask of the smallest float above +0.  Call this number	REAL_FLT_MIN...   FLT_UWORD_EXP_MIN	The bitmask of the float representation of REAL_FLT_MIN's exponent.   FLT_UWORD_LOG_MIN	The bitmask of |log(REAL_FLT_MIN)|, rounding down.   FLT_SMALLEST_EXP	REAL_FLT_MIN's exponent - EXP_BIAS (1 if denormals are not supported,	-22 if they are).*/#ifdef _FLT_NO_DENORMALS#define FLT_UWORD_IS_ZERO(x) ((x)<0x00800000L)#define FLT_UWORD_IS_SUBNORMAL(x) 0#define FLT_UWORD_MIN 0x00800000#define FLT_UWORD_EXP_MIN 0x42fc0000#define FLT_UWORD_LOG_MIN 0x42aeac50#define FLT_SMALLEST_EXP 1#else#define FLT_UWORD_IS_ZERO(x) ((x)==0)#define FLT_UWORD_IS_SUBNORMAL(x) ((x)<0x00800000L)#define FLT_UWORD_MIN 0x00000001#define FLT_UWORD_EXP_MIN 0x43160000#define FLT_UWORD_LOG_MIN 0x42cff1b5#define FLT_SMALLEST_EXP -22#endif#ifdef __STDC__#undef __P#define	__P(p)	p#else#define	__P(p)	()#endif/*  * set X_TLOSS = pi*2**52, which is possibly defined in <values.h> * (one may replace the following line by "#include <values.h>") */#define X_TLOSS		1.41484755040568800000e+16 /* Functions that are not documented, and are not in <math.h>.  */extern double logb __P((double));#ifdef _SCALB_INTextern double scalb __P((double, int));#elseextern double scalb __P((double, double));#endifextern double significand __P((double));/* ieee style elementary functions */extern double __ieee754_sqrt __P((double));			extern double __ieee754_acos __P((double));			extern double __ieee754_acosh __P((double));			extern double __ieee754_log __P((double));			extern double __ieee754_atanh __P((double));			extern double __ieee754_asin __P((double));			extern double __ieee754_atan2 __P((double,double));			extern double __ieee754_exp __P((double));extern double __ieee754_cosh __P((double));extern double __ieee754_fmod __P((double,double));extern double __ieee754_pow __P((double,double));extern double __ieee754_lgamma_r __P((double,int *));extern double __ieee754_gamma_r __P((double,int *));extern double __ieee754_log10 __P((double));extern double __ieee754_sinh __P((double));extern double __ieee754_hypot __P((double,double));extern double __ieee754_j0 __P((double));extern double __ieee754_j1 __P((double));extern double __ieee754_y0 __P((double));extern double __ieee754_y1 __P((double));extern double __ieee754_jn __P((int,double));extern double __ieee754_yn __P((int,double));extern double __ieee754_remainder __P((double,double));extern __int32_t __ieee754_rem_pio2 __P((double,double*));#ifdef _SCALB_INTextern double __ieee754_scalb __P((double,int));#elseextern double __ieee754_scalb __P((double,double));#endif/* fdlibm kernel function */extern double __kernel_standard __P((double,double,int));extern double __kernel_sin __P((double,double,int));extern double __kernel_cos __P((double,double));extern double __kernel_tan __P((double,double,int));extern int    __kernel_rem_pio2 __P((double*,double*,int,int,int,const __int32_t*));/* Undocumented float functions.  */extern float logbf __P((float));#ifdef _SCALB_INTextern float scalbf __P((float, int));#elseextern float scalbf __P((float, float));#endifextern float significandf __P((float));/* ieee style elementary float functions */extern float __ieee754_sqrtf __P((float));			extern float __ieee754_acosf __P((float));			extern float __ieee754_acoshf __P((float));			extern float __ieee754_logf __P((float));			extern float __ieee754_atanhf __P((float));			extern float __ieee754_asinf __P((float));			extern float __ieee754_atan2f __P((float,float));			extern float __ieee754_expf __P((float));extern float __ieee754_coshf __P((float));extern float __ieee754_fmodf __P((float,float));extern float __ieee754_powf __P((float,float));extern float __ieee754_lgammaf_r __P((float,int *));extern float __ieee754_gammaf_r __P((float,int *));extern float __ieee754_log10f __P((float));extern float __ieee754_sinhf __P((float));extern float __ieee754_hypotf __P((float,float));extern float __ieee754_j0f __P((float));extern float __ieee754_j1f __P((float));extern float __ieee754_y0f __P((float));extern float __ieee754_y1f __P((float));extern float __ieee754_jnf __P((int,float));extern float __ieee754_ynf __P((int,float));extern float __ieee754_remainderf __P((float,float));extern __int32_t __ieee754_rem_pio2f __P((float,float*));#ifdef _SCALB_INTextern float __ieee754_scalbf __P((float,int));#elseextern float __ieee754_scalbf __P((float,float));#endif/* float versions of fdlibm kernel functions */extern float __kernel_sinf __P((float,float,int));extern float __kernel_cosf __P((float,float));extern float __kernel_tanf __P((float,float,int));extern int   __kernel_rem_pio2f __P((float*,float*,int,int,int,const __int32_t*));/* The original code used statements like	n0 = ((*(int*)&one)>>29)^1;		* index of high word *	ix0 = *(n0+(int*)&x);			* high word of x *	ix1 = *((1-n0)+(int*)&x);		* low word of x *   to dig two 32 bit words out of the 64 bit IEEE floating point   value.  That is non-ANSI, and, moreover, the gcc instruction   scheduler gets it wrong.  We instead use the following macros.   Unlike the original code, we determine the endianness at compile   time, not at run time; I don't see much benefit to selecting   endianness at run time.  */#ifndef __IEEE_BIG_ENDIAN#ifndef __IEEE_LITTLE_ENDIAN #error Must define endianness#endif#endif/* A union which permits us to convert between a double and two 32 bit   ints.  */#ifdef __IEEE_BIG_ENDIANtypedef union {  double value;  struct   {    __uint32_t msw;    __uint32_t lsw;  } parts;} ieee_double_shape_type;#endif#ifdef __IEEE_LITTLE_ENDIANtypedef union {  double value;  struct   {    __uint32_t lsw;    __uint32_t msw;  } parts;} ieee_double_shape_type;#endif/* Get two 32 bit ints from a double.  */#define EXTRACT_WORDS(ix0,ix1,d)				\do {								\  ieee_double_shape_type ew_u;					\  ew_u.value = (d);						\  (ix0) = ew_u.parts.msw;					\  (ix1) = ew_u.parts.lsw;					\} while (0)/* Get the more significant 32 bit int from a double.  */#define GET_HIGH_WORD(i,d)					\do {								\  ieee_double_shape_type gh_u;					\  gh_u.value = (d);						\  (i) = gh_u.parts.msw;						\} while (0)/* Get the less significant 32 bit int from a double.  */#define GET_LOW_WORD(i,d)					\do {								\  ieee_double_shape_type gl_u;					\  gl_u.value = (d);						\  (i) = gl_u.parts.lsw;						\} while (0)/* Set a double from two 32 bit ints.  */#define INSERT_WORDS(d,ix0,ix1)					\do {								\  ieee_double_shape_type iw_u;					\  iw_u.parts.msw = (ix0);					\  iw_u.parts.lsw = (ix1);					\  (d) = iw_u.value;						\} while (0)/* Set the more significant 32 bits of a double from an int.  */#define SET_HIGH_WORD(d,v)					\do {								\  ieee_double_shape_type sh_u;					\  sh_u.value = (d);						\  sh_u.parts.msw = (v);						\  (d) = sh_u.value;						\} while (0)/* Set the less significant 32 bits of a double from an int.  */#define SET_LOW_WORD(d,v)					\do {								\  ieee_double_shape_type sl_u;					\  sl_u.value = (d);						\  sl_u.parts.lsw = (v);						\  (d) = sl_u.value;						\} while (0)/* A union which permits us to convert between a float and a 32 bit   int.  */typedef union{  float value;  __uint32_t word;} ieee_float_shape_type;/* Get a 32 bit int from a float.  */#define GET_FLOAT_WORD(i,d)					\do {								\  ieee_float_shape_type gf_u;					\  gf_u.value = (d);						\  (i) = gf_u.word;						\} while (0)/* Set a float from a 32 bit int.  */#define SET_FLOAT_WORD(d,i)					\do {								\  ieee_float_shape_type sf_u;					\  sf_u.word = (i);						\  (d) = sf_u.value;						\} while (0)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -