⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 acoshd2.h

📁 Newlib 嵌入式 C库 标准实现代码
💻 H
字号:
/* --------------------------------------------------------------  *//* (C)Copyright 2006,2007,                                         *//* International Business Machines Corporation                     *//* All Rights Reserved.                                            *//*                                                                 *//* Redistribution and use in source and binary forms, with or      *//* without modification, are permitted provided that the           *//* following conditions are met:                                   *//*                                                                 *//* - Redistributions of source code must retain the above copyright*//*   notice, this list of conditions and the following disclaimer. *//*                                                                 *//* - Redistributions in binary form must reproduce the above       *//*   copyright notice, this list of conditions and the following   *//*   disclaimer in the documentation and/or other materials        *//*   provided with the distribution.                               *//*                                                                 *//* - Neither the name of IBM Corporation nor the names of its      *//*   contributors may be used to endorse or promote products       *//*   derived from this software without specific prior written     *//*   permission.                                                   *//* Redistributions of source code must retain the above copyright  *//* notice, this list of conditions and the following disclaimer.   *//*                                                                 *//* Redistributions in binary form must reproduce the above         *//* copyright notice, this list of conditions and the following     *//* disclaimer in the documentation and/or other materials          *//* provided with the distribution.                                 *//*                                                                 *//* Neither the name of IBM Corporation nor the names of its        *//* contributors may be used to endorse or promote products         *//* derived from this software without specific prior written       *//* permission.                                                     *//*                                                                 *//* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          *//* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     *//* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        *//* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        *//* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            *//* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    *//* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    *//* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    *//* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        *//* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       *//* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    *//* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  *//* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              *//* --------------------------------------------------------------  *//* PROLOG END TAG zYx                                              */#ifdef __SPU__#ifndef _ACOSHD2_H_#define _ACOSHD2_H_	1#include <spu_intrinsics.h>#include "logd2.h"#include "sqrtd2.h"/* * FUNCTION *  vector double _acoshd2(vector double x) * * DESCRIPTION *  The acoshd2 function returns a vector containing the hyperbolic *  arccosines of the corresponding elements of the input vector. * *  We are using the formula: *    acosh = ln(x + sqrt(x^2 - 1)) * *  For x near one, we use the Taylor series: * *                infinity *                 ------ *                  -   '         *                   -                 k *    acosh x =       -      C  (x - 1) *                   -        k *                  -   , *                 ------ *                 k = 0 * * *  Special Cases: *	- acosh(1)        = +0 *	- acosh(NaN)      = NaN *	- acosh(Infinity) = Infinity *	- acosh(x < 1)    = NaN * *//* * Taylor Series Coefficients  * for x around 1. */#define ACOSH_TAY01  1.0000000000000000000000000000000000000000000000000000000000000000000000E0  /* 1 / 1                            */#define ACOSH_TAY02 -8.3333333333333333333333333333333333333333333333333333333333333333333333E-2 /* 1 / 12                           */#define ACOSH_TAY03  1.8750000000000000000000000000000000000000000000000000000000000000000000E-2 /* 3 / 160                          */#define ACOSH_TAY04 -5.5803571428571428571428571428571428571428571428571428571428571428571429E-3 /* 5 / 896                          */#define ACOSH_TAY05  1.8988715277777777777777777777777777777777777777777777777777777777777778E-3 /* 35 / 18432                       */#define ACOSH_TAY06 -6.9912997159090909090909090909090909090909090909090909090909090909090909E-4 /* 63 / 90112                       */#define ACOSH_TAY07  2.7113694411057692307692307692307692307692307692307692307692307692307692E-4 /* 231 / 851968                     */#define ACOSH_TAY08 -1.0910034179687500000000000000000000000000000000000000000000000000000000E-4 /* 143 / 1310720                    */#define ACOSH_TAY09  4.5124222250545726102941176470588235294117647058823529411764705882352941E-5 /* 6435 / 142606336                 */#define ACOSH_TAY10 -1.9065643611707185444078947368421052631578947368421052631578947368421053E-5 /* 12155 / 637534208                */#define ACOSH_TAY11  8.1936873140789213634672619047619047619047619047619047619047619047619048E-6 /* 46189 / 5637144576               */#define ACOSH_TAY12 -3.5705692742181860882302989130434782608695652173913043478260869565217391E-6 /* 88179 / 24696061952              */#define ACOSH_TAY13  1.5740259550511837005615234375000000000000000000000000000000000000000000E-6 /* 676039 / 429496729600            */#define ACOSH_TAY14 -7.0068819224144573564882631655092592592592592592592592592592592592592593E-7 /* 1300075 / 1855425871872          */#define ACOSH_TAY15  3.1453306166503321507881427633351293103448275862068965517241379310344828E-7 /* 5014575 / 15942918602752         */#if 0#define ACOSH_TAY16 -1.4221629293564136230176494967552923387096774193548387096774193548387097E-7 /* 9694845 / 68169720922112         */#define ACOSH_TAY17  6.4711106776113328206437555226412686434659090909090909090909090909090909E-8 /* 100180065 / 1548112371908608     */#define ACOSH_TAY18 -2.9609409781171182528071637664522443498883928571428571428571428571428571E-8 /* 116680311 / 3940649673949184     */#define ACOSH_TAY19  1.3615438056281793767600509061201198680980785472972972972972972972972973E-8 /* 2268783825 / 166633186212708352  */#endifstatic __inline vector double _acoshd2(vector double x){    vec_uchar16 dup_even  = ((vec_uchar16) { 0,1,2,3,  0,1,2,3, 8,9,10,11, 8,9,10,11 });    vec_double2 minus_oned = spu_splats(-1.0);    vec_double2 twod       = spu_splats(2.0);    vec_double2 xminus1;    vec_float4  xf;    /* Where we switch from taylor to formula */    vec_float4  switch_approx = spu_splats(1.15f);    vec_uint4   use_form;    vec_double2 result, fresult, mresult;;        xf = spu_roundtf(x);    xf = spu_shuffle(xf, xf, dup_even);    /*     * Formula:     *   acosh = ln(x + sqrt(x^2 - 1))     */    fresult = _sqrtd2(spu_madd(x, x, minus_oned));    fresult = spu_add(x, fresult);    fresult = _logd2(fresult);    /*     * Taylor Series     */    xminus1 = spu_add(x, minus_oned);    mresult = spu_madd(xminus1, spu_splats(ACOSH_TAY15), spu_splats(ACOSH_TAY14));    mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY13));    mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY12));    mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY11));    mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY10));    mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY09));    mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY08));    mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY07));    mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY06));    mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY05));    mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY04));    mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY03));    mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY02));    mresult = spu_madd(xminus1, mresult, spu_splats(ACOSH_TAY01));        mresult = spu_mul(mresult, _sqrtd2(spu_mul(xminus1, twod)));    /*     * Select series or formula     */    use_form = spu_cmpgt(xf, switch_approx);    result = spu_sel(mresult, fresult, (vec_ullong2)use_form);    return result;}#endif /* _ACOSHD2_H_ */#endif /* __SPU__ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -