⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lgammad2.h

📁 Newlib 嵌入式 C库 标准实现代码
💻 H
字号:
/* --------------------------------------------------------------  *//* (C)Copyright 2006,2007,                                         *//* International Business Machines Corporation                     *//* All Rights Reserved.                                            *//*                                                                 *//* Redistribution and use in source and binary forms, with or      *//* without modification, are permitted provided that the           *//* following conditions are met:                                   *//*                                                                 *//* - Redistributions of source code must retain the above copyright*//*   notice, this list of conditions and the following disclaimer. *//*                                                                 *//* - Redistributions in binary form must reproduce the above       *//*   copyright notice, this list of conditions and the following   *//*   disclaimer in the documentation and/or other materials        *//*   provided with the distribution.                               *//*                                                                 *//* - Neither the name of IBM Corporation nor the names of its      *//*   contributors may be used to endorse or promote products       *//*   derived from this software without specific prior written     *//*   permission.                                                   *//* Redistributions of source code must retain the above copyright  *//* notice, this list of conditions and the following disclaimer.   *//*                                                                 *//* Redistributions in binary form must reproduce the above         *//* copyright notice, this list of conditions and the following     *//* disclaimer in the documentation and/or other materials          *//* provided with the distribution.                                 *//*                                                                 *//* Neither the name of IBM Corporation nor the names of its        *//* contributors may be used to endorse or promote products         *//* derived from this software without specific prior written       *//* permission.                                                     *//*                                                                 *//* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          *//* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     *//* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        *//* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        *//* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            *//* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    *//* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    *//* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    *//* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        *//* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       *//* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    *//* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  *//* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              *//* --------------------------------------------------------------  *//* PROLOG END TAG zYx                                              */#ifdef __SPU__#ifndef _LGAMMAD2_H_#define _LGAMMAD2_H_	1#include <spu_intrinsics.h>#include "divd2.h"#include "recipd2.h"#include "logd2.h"#include "sind2.h"#include "truncd2.h"/* * FUNCTION *	vector double _lgammad2(vector double x) - Natural Log of Gamma Function * * DESCRIPTION *	_lgammad2 calculates the natural logarithm of the absolute value of the gamma *	function for the corresponding elements of the input vector. * * C99 Special Cases: *	lgamma(0) returns +infinite  *	lgamma(1) returns +0 *	lgamma(2) returns +0 *	lgamma(negative integer) returns +infinite  *	lgamma(+infinite) returns +infinite *	lgamma(-infinite) returns +infinite * * Other Cases: *  lgamma(Nan) returns Nan *  lgamma(Denorm) treated as lgamma(0) and returns +infinite * */#define PI                  3.1415926535897932384626433832795028841971693993751058209749445923078164#define HALFLOG2PI          9.1893853320467274178032973640561763986139747363778341281715154048276570E-1#define EULER_MASCHERONI    0.5772156649015328606065/* * Zeta constants for Maclaurin approx. near zero */#define ZETA_02_DIV_02       8.2246703342411321823620758332301E-1#define ZETA_03_DIV_03      -4.0068563438653142846657938717048E-1#define ZETA_04_DIV_04       2.7058080842778454787900092413529E-1#define ZETA_05_DIV_05      -2.0738555102867398526627309729141E-1#define ZETA_06_DIV_06       1.6955717699740818995241965496515E-1/* *  More Maclaurin coefficients *//*#define ZETA_07_DIV_07      -1.4404989676884611811997107854997E-1#define ZETA_08_DIV_08       1.2550966952474304242233565481358E-1#define ZETA_09_DIV_09      -1.1133426586956469049087252991471E-1#define ZETA_10_DIV_10       1.0009945751278180853371459589003E-1#define ZETA_11_DIV_11      -9.0954017145829042232609298411497E-2#define ZETA_12_DIV_12       8.3353840546109004024886499837312E-2#define ZETA_13_DIV_13      -7.6932516411352191472827064348181E-2#define ZETA_14_DIV_14       7.1432946295361336059232753221795E-2#define ZETA_15_DIV_15      -6.6668705882420468032903448567376E-2#define ZETA_16_DIV_16       6.2500955141213040741983285717977E-2#define ZETA_17_DIV_17      -5.8823978658684582338957270605504E-2#define ZETA_18_DIV_18       5.5555767627403611102214247869146E-2#define ZETA_19_DIV_19      -5.2631679379616660733627666155673E-2#define ZETA_20_DIV_20       5.0000047698101693639805657601934E-2 *//* * Coefficients for Stirling's Series for Lgamma() */#define STIRLING_01    8.3333333333333333333333333333333333333333333333333333333333333333333333E-2#define STIRLING_02   -2.7777777777777777777777777777777777777777777777777777777777777777777778E-3#define STIRLING_03    7.9365079365079365079365079365079365079365079365079365079365079365079365E-4#define STIRLING_04   -5.9523809523809523809523809523809523809523809523809523809523809523809524E-4#define STIRLING_05    8.4175084175084175084175084175084175084175084175084175084175084175084175E-4#define STIRLING_06   -1.9175269175269175269175269175269175269175269175269175269175269175269175E-3#define STIRLING_07    6.4102564102564102564102564102564102564102564102564102564102564102564103E-3#define STIRLING_08   -2.9550653594771241830065359477124183006535947712418300653594771241830065E-2#define STIRLING_09    1.7964437236883057316493849001588939669435025472177174963552672531000704E-1#define STIRLING_10   -1.3924322169059011164274322169059011164274322169059011164274322169059011E0#define STIRLING_11    1.3402864044168391994478951000690131124913733609385783298826777087646653E1#define STIRLING_12   -1.5684828462600201730636513245208897382810426288687158252375643679991506E2#define STIRLING_13    2.1931033333333333333333333333333333333333333333333333333333333333333333E3#define STIRLING_14   -3.6108771253724989357173265219242230736483610046828437633035334184759472E4#define STIRLING_15    6.9147226885131306710839525077567346755333407168779805042318946657100161E5/* *  More Stirling's coefficients *//*#define STIRLING_16   -1.5238221539407416192283364958886780518659076533839342188488298545224541E7#define STIRLING_17    3.8290075139141414141414141414141414141414141414141414141414141414141414E8#define STIRLING_18   -1.0882266035784391089015149165525105374729434879810819660443720594096534E10#define STIRLING_19    3.4732028376500225225225225225225225225225225225225225225225225225225225E11#define STIRLING_20   -1.2369602142269274454251710349271324881080978641954251710349271324881081E13#define STIRLING_21    4.8878806479307933507581516251802290210847053890567382180703629532735764E14*/static __inline vector double _lgammad2(vector double x) {  vec_uchar16 dup_even  = ((vec_uchar16) { 0,1,2,3, 0,1,2,3,  8, 9,10,11,  8, 9,10,11 });  vec_uchar16 dup_odd   = ((vec_uchar16) { 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 });  vec_uchar16 swap_word = ((vec_uchar16) { 4,5,6,7, 0,1,2,3, 12,13,14,15,  8, 9,10,11  });  vec_double2 infinited = (vec_double2)spu_splats(0x7FF0000000000000ull);  vec_double2 zerod     = spu_splats(0.0);  vec_double2 oned      = spu_splats(1.0);  vec_double2 twod      = spu_splats(2.0);  vec_double2 pi        = spu_splats(PI);  vec_double2 sign_maskd = spu_splats(-0.0);  /* This is where we switch from near zero approx. */  vec_float4 zero_switch = spu_splats(0.001f);  vec_float4 shift_switch = spu_splats(6.0f);  vec_float4 xf;  vec_double2 inv_x, inv_xsqu;                    vec_double2 xtrunc, xstirling;  vec_double2 sum, xabs;  vec_uint4 xhigh, xlow, xthigh, xtlow;  vec_uint4 x1, isnaninf, isnposint, iszero, isint, isneg, isshifted, is1, is2;  vec_double2 result, stresult, shresult, mresult, nresult;  /* Force Denorms to 0 */  x = spu_add(x, zerod);  xabs = spu_andc(x, sign_maskd);  xf = spu_roundtf(xabs);  xf = spu_shuffle(xf, xf, dup_even);  /*   * For 0 < x <= 0.001.   * Approximation Near Zero   *   * Use Maclaurin Expansion of lgamma()   *   * lgamma(z) = -ln(z) - z * EulerMascheroni + Sum[(-1)^n * z^n * Zeta(n)/n]   */  mresult = spu_madd(xabs, spu_splats(ZETA_06_DIV_06), spu_splats(ZETA_05_DIV_05));  mresult = spu_madd(xabs, mresult, spu_splats(ZETA_04_DIV_04));  mresult = spu_madd(xabs, mresult, spu_splats(ZETA_03_DIV_03));  mresult = spu_madd(xabs, mresult, spu_splats(ZETA_02_DIV_02));  mresult = spu_mul(xabs, spu_mul(xabs, mresult));  mresult = spu_sub(mresult, spu_add(_logd2(xabs), spu_mul(xabs, spu_splats(EULER_MASCHERONI))));  /*   * For 0.001 < x <= 6.0, we are going to push value   * out to an area where Stirling's approximation is   * accurate. Let's use a constant of 6.   *   * Use the recurrence relation:   *    lgamma(x + 1) = ln(x) + lgamma(x)   *    * Note that we shift x here, before Stirling's calculation,   * then after Stirling's, we adjust the result.   *   */  isshifted = spu_cmpgt(shift_switch, xf);  xstirling = spu_sel(xabs, spu_add(xabs, spu_splats(6.0)), (vec_ullong2)isshifted);  inv_x    = _recipd2(xstirling);              inv_xsqu = spu_mul(inv_x, inv_x);              /*   * For 6.0 < x < infinite   *   * Use Stirling's Series.   *   *              1                    1                1      1        1   * lgamma(x) = --- ln (2*pi) + (z - ---) ln(x) - x + --- - ----- + ------ ...   *              2                    2               12x   360x^3  1260x^5   *   * Taking 10 terms of the sum gives good results for x > 6.0   *   */  sum = spu_madd(inv_xsqu, spu_splats(STIRLING_15), spu_splats(STIRLING_14));  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_13));  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_12));  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_11));  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_10));  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_09));  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_08));  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_07));  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_06));  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_05));  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_04));  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_03));  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_02));  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_01));  sum = spu_mul(sum, inv_x);  stresult = spu_madd(spu_sub(xstirling, spu_splats(0.5)), _logd2(xstirling), spu_splats(HALFLOG2PI));  stresult = spu_sub(stresult, xstirling);  stresult = spu_add(stresult, sum);  /*   * Adjust result if we shifted x into Stirling range.   *   * lgamma(x) = lgamma(x + n) - ln(x(x+1)(x+2)...(x+n-1)   *   */  shresult = spu_mul(xabs, spu_add(xabs, spu_splats(1.0)));  shresult = spu_mul(shresult, spu_add(xabs, spu_splats(2.0)));  shresult = spu_mul(shresult, spu_add(xabs, spu_splats(3.0)));  shresult = spu_mul(shresult, spu_add(xabs, spu_splats(4.0)));  shresult = spu_mul(shresult, spu_add(xabs, spu_splats(5.0)));  shresult = _logd2(shresult);  shresult = spu_sub(stresult, shresult);  stresult = spu_sel(stresult, shresult, (vec_ullong2)isshifted);  /*   * Select either Maclaurin or Stirling result before Negative X calc.   */  xf = spu_shuffle(xf, xf, dup_even);  vec_uint4 useStirlings = spu_cmpgt(xf, zero_switch);  result = spu_sel(mresult, stresult, (vec_ullong2)useStirlings);  /*   * Approximation for Negative X   *   * Use reflection relation   *   * gamma(x) * gamma(-x) = -pi/(x sin(pi x))   *   * lgamma(x) = log(pi/(-x sin(pi x))) - lgamma(-x)   *              */  nresult = spu_mul(x, _sind2(spu_mul(x, pi)));  nresult = spu_andc(nresult, sign_maskd);  nresult = _logd2(_divd2(pi, nresult));  nresult = spu_sub(nresult, result);  /*   * Select between the negative or positive x approximations.   */  isneg = (vec_uint4)spu_shuffle(x, x, dup_even);  isneg = spu_rlmaska(isneg, -32);  result = spu_sel(result, nresult, (vec_ullong2)isneg);  /*   * Finally, special cases/errors.   */  xhigh = (vec_uint4)spu_shuffle(xabs, xabs, dup_even);  xlow  = (vec_uint4)spu_shuffle(xabs, xabs, dup_odd);  /* x = zero, return infinite */  x1 = spu_or(xhigh, xlow);  iszero = spu_cmpeq(x1, 0);  /* x = negative integer, return infinite */  xtrunc = _truncd2(xabs);  xthigh = (vec_uint4)spu_shuffle(xtrunc, xtrunc, dup_even);  xtlow  = (vec_uint4)spu_shuffle(xtrunc, xtrunc, dup_odd);  isint = spu_and(spu_cmpeq(xthigh, xhigh), spu_cmpeq(xtlow, xlow));  isnposint = spu_or(spu_and(isint, isneg), iszero);  result = spu_sel(result, infinited, (vec_ullong2)isnposint);  /* x = 1.0 or 2.0, return 0.0 */  is1 = spu_cmpeq((vec_uint4)x, (vec_uint4)oned);  is1 = spu_and(is1, spu_shuffle(is1, is1, swap_word));  is2 = spu_cmpeq((vec_uint4)x, (vec_uint4)twod);  is2 = spu_and(is2, spu_shuffle(is2, is2, swap_word));  result = spu_sel(result, zerod, (vec_ullong2)spu_or(is1,is2));  /* x = +/- infinite or nan, return |x| */  isnaninf = spu_cmpgt(xhigh, 0x7FEFFFFF);  result = spu_sel(result, xabs, (vec_ullong2)isnaninf);  return result;}#endif /* _LGAMMAD2_H_ */#endif /* __SPU__ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -