⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lgammaf4.h

📁 Newlib 嵌入式 C库 标准实现代码
💻 H
字号:
/* --------------------------------------------------------------  *//* (C)Copyright 2006,2007,                                         *//* International Business Machines Corporation                     *//* All Rights Reserved.                                            *//*                                                                 *//* Redistribution and use in source and binary forms, with or      *//* without modification, are permitted provided that the           *//* following conditions are met:                                   *//*                                                                 *//* - Redistributions of source code must retain the above copyright*//*   notice, this list of conditions and the following disclaimer. *//*                                                                 *//* - Redistributions in binary form must reproduce the above       *//*   copyright notice, this list of conditions and the following   *//*   disclaimer in the documentation and/or other materials        *//*   provided with the distribution.                               *//*                                                                 *//* - Neither the name of IBM Corporation nor the names of its      *//*   contributors may be used to endorse or promote products       *//*   derived from this software without specific prior written     *//*   permission.                                                   *//* Redistributions of source code must retain the above copyright  *//* notice, this list of conditions and the following disclaimer.   *//*                                                                 *//* Redistributions in binary form must reproduce the above         *//* copyright notice, this list of conditions and the following     *//* disclaimer in the documentation and/or other materials          *//* provided with the distribution.                                 *//*                                                                 *//* Neither the name of IBM Corporation nor the names of its        *//* contributors may be used to endorse or promote products         *//* derived from this software without specific prior written       *//* permission.                                                     *//*                                                                 *//* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          *//* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     *//* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        *//* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        *//* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            *//* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    *//* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    *//* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    *//* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        *//* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       *//* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    *//* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  *//* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              *//* --------------------------------------------------------------  *//* PROLOG END TAG zYx                                              */#ifdef __SPU__#ifndef _LGAMMAF4_H_#define _LGAMMAF4_H_	1#include <spu_intrinsics.h>#include "lgammad2.h"#include "recipf4.h"#include "logf4.h"#include "sinf4.h"#include "truncf4.h"/* * FUNCTION *	vector float _lgammaf4(vector float x) - Natural Log of Gamma Function * * DESCRIPTION *	_lgammaf4 calculates the natural logarithm of the absolute value of the gamma *	function for the corresponding elements of the input vector. * * C99 Special Cases: *	lgamma(0) returns +infinite  *	lgamma(1) returns +0 *	lgamma(2) returns +0 *	lgamma(negative integer) returns +infinite  *	lgamma(+infinite) returns +infinite *	lgamma(-infinite) returns +infinite * * Other Cases: *  lgamma(Nan) returns Nan *  lgamma(Denorm) treated as lgamma(0) and returns +infinite * */static __inline vector float _lgammaf4(vector float x) {  vec_float4 inff       = (vec_float4)spu_splats(0x7F800000);  vec_float4 zerof      = spu_splats(0.0f);  vec_float4 pi         = spu_splats((float)PI);  vec_float4 sign_maskf = spu_splats(-0.0f);  vector unsigned int gt0;  /* This is where we switch from near zero approx. */  vec_float4 mac_switch = spu_splats(0.16f);  vec_float4 shift_switch = spu_splats(6.0f);  vec_float4 inv_x, inv_xsqu;                    vec_float4 xtrunc, xstirling;  vec_float4 sum, xabs;  vec_uint4  isnaninf, isshifted;  vec_float4 result, stresult, shresult, mresult, nresult;  /* Force Denorms to 0 */  x = spu_add(x, zerof);  xabs = spu_andc(x, sign_maskf);  gt0    = spu_cmpgt(x, zerof);  xtrunc = _truncf4(x);  /*   * For 0 < x <= 0.16.   * Approximation Near Zero   *   * Use Maclaurin Expansion of lgamma()   *   * lgamma(z) = -ln(z) - z * EulerMascheroni + Sum[(-1)^n * z^n * Zeta(n)/n]   */  mresult = spu_madd(xabs, spu_splats((float)ZETA_06_DIV_06), spu_splats((float)ZETA_05_DIV_05));  mresult = spu_madd(xabs, mresult, spu_splats((float)ZETA_04_DIV_04));  mresult = spu_madd(xabs, mresult, spu_splats((float)ZETA_03_DIV_03));  mresult = spu_madd(xabs, mresult, spu_splats((float)ZETA_02_DIV_02));  mresult = spu_mul(xabs, spu_mul(xabs, mresult));  mresult = spu_sub(mresult, spu_add(_logf4(xabs), spu_mul(xabs, spu_splats((float)EULER_MASCHERONI))));  /*   * For 0.16 < x <= 6.0, we are going to push value   * out to an area where Stirling's approximation is   * accurate. Let's use a constant of 6.   *   * Use the recurrence relation:   *    lgamma(x + 1) = ln(x) + lgamma(x)   *    * Note that we shift x here, before Stirling's calculation,   * then after Stirling's, we adjust the result.   *   */  isshifted = spu_cmpgt(shift_switch, x);  xstirling = spu_sel(xabs, spu_add(xabs, spu_splats(6.0f)), isshifted);  inv_x    = _recipf4(xstirling);              inv_xsqu = spu_mul(inv_x, inv_x);              /*   * For 6.0 < x < infinite   *   * Use Stirling's Series.   *   *              1                    1                1      1        1   * lgamma(x) = --- ln (2*pi) + (z - ---) ln(x) - x + --- - ----- + ------ ...   *              2                    2               12x   360x^3  1260x^5   *   *   */  sum = spu_madd(inv_xsqu, spu_splats((float)STIRLING_10), spu_splats((float)STIRLING_09));  sum = spu_madd(sum, inv_xsqu, spu_splats((float)STIRLING_08));  sum = spu_madd(sum, inv_xsqu, spu_splats((float)STIRLING_07));  sum = spu_madd(sum, inv_xsqu, spu_splats((float)STIRLING_06));  sum = spu_madd(sum, inv_xsqu, spu_splats((float)STIRLING_05));  sum = spu_madd(sum, inv_xsqu, spu_splats((float)STIRLING_04));  sum = spu_madd(sum, inv_xsqu, spu_splats((float)STIRLING_03));  sum = spu_madd(sum, inv_xsqu, spu_splats((float)STIRLING_02));  sum = spu_madd(sum, inv_xsqu, spu_splats((float)STIRLING_01));  sum = spu_mul(sum, inv_x);  stresult = spu_madd(spu_sub(xstirling, spu_splats(0.5f)), _logf4(xstirling), spu_splats((float)HALFLOG2PI));  stresult = spu_sub(stresult, xstirling);  stresult = spu_add(stresult, sum);  /*   * Adjust result if we shifted x into Stirling range.   *   * lgamma(x) = lgamma(x + n) - ln(x(x+1)(x+2)...(x+n-1)   *   */  shresult = spu_mul(xabs, spu_add(xabs, spu_splats(1.0f)));  shresult = spu_mul(shresult, spu_add(xabs, spu_splats(2.0f)));  shresult = spu_mul(shresult, spu_add(xabs, spu_splats(3.0f)));  shresult = spu_mul(shresult, spu_add(xabs, spu_splats(4.0f)));  shresult = spu_mul(shresult, spu_add(xabs, spu_splats(5.0f)));  shresult = _logf4(shresult);  shresult = spu_sub(stresult, shresult);  stresult = spu_sel(stresult, shresult, isshifted);  /*   * Select either Maclaurin or Stirling result before Negative X calc.   */  vec_uint4 useStirlings = spu_cmpgt(xabs, mac_switch);  result = spu_sel(mresult, stresult, useStirlings);  /*   * Approximation for Negative X   *   * Use reflection relation:   *   * gamma(x) * gamma(-x) = -pi/(x sin(pi x))   *   * lgamma(x) = log(pi/(-x sin(pi x))) - lgamma(-x)   *              */  nresult = spu_mul(x, _sinf4(spu_mul(x, pi)));  nresult = spu_andc(nresult, sign_maskf);  nresult = spu_sub(_logf4(pi), spu_add(result, _logf4(nresult)));  /*   * Select between the negative or positive x approximations.   */  result = spu_sel(nresult, result, gt0);  /*   * Finally, special cases/errors.   */  /*   * x = non-positive integer, return infinity.   */  result = spu_sel(result, inff, spu_andc(spu_cmpeq(x, xtrunc), gt0));  /* x = +/- infinite or nan, return |x| */  isnaninf = spu_cmpgt((vec_uint4)xabs, 0x7FEFFFFF);  result   = spu_sel(result, xabs, isnaninf);  return result;}#endif /* _LGAMMAF4_H_ */#endif /* __SPU__ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -