⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 acosd2.h

📁 Newlib 嵌入式 C库 标准实现代码
💻 H
字号:
/* --------------------------------------------------------------  *//* (C)Copyright 2006,2007,                                         *//* International Business Machines Corporation                     *//* All Rights Reserved.                                            *//*                                                                 *//* Redistribution and use in source and binary forms, with or      *//* without modification, are permitted provided that the           *//* following conditions are met:                                   *//*                                                                 *//* - Redistributions of source code must retain the above copyright*//*   notice, this list of conditions and the following disclaimer. *//*                                                                 *//* - Redistributions in binary form must reproduce the above       *//*   copyright notice, this list of conditions and the following   *//*   disclaimer in the documentation and/or other materials        *//*   provided with the distribution.                               *//*                                                                 *//* - Neither the name of IBM Corporation nor the names of its      *//*   contributors may be used to endorse or promote products       *//*   derived from this software without specific prior written     *//*   permission.                                                   *//* Redistributions of source code must retain the above copyright  *//* notice, this list of conditions and the following disclaimer.   *//*                                                                 *//* Redistributions in binary form must reproduce the above         *//* copyright notice, this list of conditions and the following     *//* disclaimer in the documentation and/or other materials          *//* provided with the distribution.                                 *//*                                                                 *//* Neither the name of IBM Corporation nor the names of its        *//* contributors may be used to endorse or promote products         *//* derived from this software without specific prior written       *//* permission.                                                     *//*                                                                 *//* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          *//* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     *//* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        *//* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        *//* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            *//* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    *//* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    *//* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    *//* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        *//* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       *//* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    *//* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  *//* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              *//* --------------------------------------------------------------  *//* PROLOG END TAG zYx                                              */#ifdef __SPU__#ifndef _ACOSD2_H_#define _ACOSD2_H_	1#include <spu_intrinsics.h>#include "simdmath.h"#include "sqrtd2.h"#include "divd2.h"/* * FUNCTION *	vector double _acosd2(vector double x) * * DESCRIPTION * 	Compute the arc cosine of the vector of double precision elements  * 	specified by x, returning the resulting angles in radians. The input *      elements are to be in the closed interval [-1, 1]. Values outside  *      this range result in a invalid operation execption being latched in  *	the FPSCR register and a NAN is returned. * * 	The basic algorithm computes the arc cosine using PI/2 - asind2(x).  *      However, as |x| approaches 1, there is a cancellation error in  *	subtracting asind2(x) from PI/2, so we simplify the evaluation *	instead of layering acosd2 on top of asind2. * * 	This yields the basic algorithm of: * *	   absx = (x < 0.0) ? -x : x; *	  *	   if (absx > 0.5) { *	     if (x < 0) { *	       addend = SM_PI; *	       multiplier = -2.0; *	     } else { *	       addend = 0.0; *	       multiplier = 2.0; *	     } *	 *	     x = sqrt(-0.5 * absx + 0.5); *	   } else { *	     addend = SM_PI_2; *	     multiplier = -1.0; *	   } *	 *	    x2 = x * x; *	    x3 = x2 * x; * *	    p = ((((P5 * x2 + P4)*x2 + P3)*x2 + P2)*x2 + P1)*x2 + P0; *	  *	    q = ((((Q5 * x2 + Q4)*x2 + Q3)*x2 + Q2)*x2 + Q1)*x2 + Q0;; *	 *	    pq = p / q; *	 *	    result = (x3*pq + x)*multiplier - addend; * *	Where P5-P0 and Q5-Q0 are the polynomial coeficients. See asind2  *	for additional details. */static __inline vector double _acosd2(vector double x){  vec_uint4   x_gt_half, x_eq_half;  vec_double2 x_neg;			// input x is negative  vec_double2 x_abs;			// absolute value of x  vec_double2 x_trans;			// transformed x when |x| > 0.5  vec_double2 x2, x3;			// x squared and x cubed, respectively.  vec_double2 result;  vec_double2 multiplier, addend;   vec_double2 p, q, pq;  vec_double2 half = spu_splats(0.5);  vec_double2 sign = (vec_double2)spu_splats(0x8000000000000000ULL);  vec_uchar16 splat_hi = ((vec_uchar16){0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11});    // Compute the absolute value of x  x_abs = spu_andc(x, sign);    // Perform transformation for the case where |x| > 0.5. We rely on  // sqrtd2 producing a NAN is |x| > 1.0.  x_trans = _sqrtd2(spu_nmsub(x_abs, half, half));    // Determine the correct addend and multiplier.  x_neg = (vec_double2)spu_rlmaska((vec_int4)spu_shuffle(x, x, splat_hi), -31);  x_gt_half = spu_cmpgt((vec_uint4)x_abs, (vec_uint4)half);  x_eq_half = spu_cmpeq((vec_uint4)x_abs, (vec_uint4)half);  x_gt_half = spu_or(x_gt_half, spu_and(x_eq_half, spu_rlqwbyte(x_gt_half, 4)));  x_gt_half = spu_shuffle(x_gt_half, x_gt_half, splat_hi);  addend = spu_sel(spu_splats(SM_PI_2), spu_and(spu_splats(SM_PI), x_neg), (vec_ullong2)x_gt_half);  multiplier = spu_sel(spu_splats(-1.0), spu_sel(spu_splats(2.0), x, (vec_ullong2)sign), (vec_ullong2)x_gt_half);  // Select whether to use the x or the transformed x for the polygon evaluation.  // if |x| > 0.5 use x_trans  // else         use x  x = spu_sel(x, x_trans, (vec_ullong2)x_gt_half);  // Compute the polynomials.  x2 = spu_mul(x, x);  x3 = spu_mul(x2, x);    p = spu_madd(spu_splats(0.004253011369004428248960), x2, spu_splats(-0.6019598008014123785661));  p = spu_madd(p, x2, spu_splats(5.444622390564711410273));  p = spu_madd(p, x2, spu_splats(-16.26247967210700244449));  p = spu_madd(p, x2, spu_splats(19.56261983317594739197));  p = spu_madd(p, x2, spu_splats(-8.198089802484824371615));  q = spu_add(x2, spu_splats(-14.74091372988853791896));  q = spu_madd(q, x2, spu_splats(70.49610280856842141659));  q = spu_madd(q, x2, spu_splats(-147.1791292232726029859));  q = spu_madd(q, x2, spu_splats(139.5105614657485689735));  q = spu_madd(q, x2, spu_splats(-49.18853881490881290097));    // Compute the rational solution p/q and final multiplication and addend   // correction.  pq = _divd2(p, q);  result = spu_madd(spu_madd(x3, pq, x), multiplier, addend);  return (result);}#endif /* _ACOSD2_H_ */#endif /* __SPU__ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -