⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tgammad2.h

📁 Newlib 嵌入式 C库 标准实现代码
💻 H
字号:
/* --------------------------------------------------------------  *//* (C)Copyright 2006,2007,                                         *//* International Business Machines Corporation                     *//* All Rights Reserved.                                            *//*                                                                 *//* Redistribution and use in source and binary forms, with or      *//* without modification, are permitted provided that the           *//* following conditions are met:                                   *//*                                                                 *//* - Redistributions of source code must retain the above copyright*//*   notice, this list of conditions and the following disclaimer. *//*                                                                 *//* - Redistributions in binary form must reproduce the above       *//*   copyright notice, this list of conditions and the following   *//*   disclaimer in the documentation and/or other materials        *//*   provided with the distribution.                               *//*                                                                 *//* - Neither the name of IBM Corporation nor the names of its      *//*   contributors may be used to endorse or promote products       *//*   derived from this software without specific prior written     *//*   permission.                                                   *//* Redistributions of source code must retain the above copyright  *//* notice, this list of conditions and the following disclaimer.   *//*                                                                 *//* Redistributions in binary form must reproduce the above         *//* copyright notice, this list of conditions and the following     *//* disclaimer in the documentation and/or other materials          *//* provided with the distribution.                                 *//*                                                                 *//* Neither the name of IBM Corporation nor the names of its        *//* contributors may be used to endorse or promote products         *//* derived from this software without specific prior written       *//* permission.                                                     *//*                                                                 *//* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          *//* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     *//* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        *//* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        *//* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            *//* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    *//* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    *//* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    *//* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        *//* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       *//* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    *//* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  *//* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              *//* --------------------------------------------------------------  *//* PROLOG END TAG zYx                                              */#ifdef __SPU__#ifndef _TGAMMAD2_H_#define _TGAMMAD2_H_	1#include <spu_intrinsics.h>#include "simdmath.h"#include "recipd2.h"#include "truncd2.h"#include "expd2.h"#include "logd2.h"#include "divd2.h"#include "sind2.h"#include "powd2.h"/* * FUNCTION *	vector double _tgammad2(vector double x) * * DESCRIPTION *	_tgammad2  * *	This is an interesting function to approximate fast *	and accurately. We take a fairly standard approach - break  *	the domain into 5 separate regions: * *	1. [-infinity, 0)  - use  *	2. [0, 1)          - push x into [1,2), then adjust the  *	                     result. *	3. [1, 2)          - use a rational approximation. *	4. [2, 10)         - pull back into [1, 2), then adjust *	                     the result. *	5. [10, +infinity] - use Stirling's Approximation. * * * Special Cases: *	- tgamma(+/- 0) returns +/- infinity *	- tgamma(negative integer) returns NaN *	- tgamma(-infinity) returns NaN *	- tgamma(infinity) returns infinity * *//* * Coefficients for Stirling's Series for Gamma() *//* 1/ 1 */#define STIRLING_00   1.000000000000000000000000000000000000E0/* 1/ 12 */#define STIRLING_01   8.333333333333333333333333333333333333E-2/* 1/ 288 */#define STIRLING_02   3.472222222222222222222222222222222222E-3/* -139/ 51840 */#define STIRLING_03  -2.681327160493827160493827160493827160E-3/* -571/ 2488320 */#define STIRLING_04  -2.294720936213991769547325102880658436E-4/* 163879/ 209018880 */#define STIRLING_05   7.840392217200666274740348814422888497E-4/* 5246819/ 75246796800 */#define STIRLING_06   6.972813758365857774293988285757833083E-5/* -534703531/ 902961561600 */#define STIRLING_07  -5.921664373536938828648362256044011874E-4/* -4483131259/ 86684309913600 */#define STIRLING_08  -5.171790908260592193370578430020588228E-5/* 432261921612371/ 514904800886784000 */#define STIRLING_09   8.394987206720872799933575167649834452E-4/* 6232523202521089/ 86504006548979712000 */#define STIRLING_10   7.204895416020010559085719302250150521E-5/* -25834629665134204969/ 13494625021640835072000 */#define STIRLING_11  -1.914438498565477526500898858328522545E-3/* -1579029138854919086429/ 9716130015581401251840000 */#define STIRLING_12  -1.625162627839158168986351239802709981E-4/* 746590869962651602203151/ 116593560186976815022080000 */#define STIRLING_13   6.403362833808069794823638090265795830E-3/* 1511513601028097903631961/ 2798245444487443560529920000 */#define STIRLING_14   5.401647678926045151804675085702417355E-4/* -8849272268392873147705987190261/ 299692087104605205332754432000000 */#define STIRLING_15  -2.952788094569912050544065105469382445E-2/* -142801712490607530608130701097701/ 57540880724084199423888850944000000 */#define STIRLING_16  -2.481743600264997730915658368743464324E-3/* * Rational Approximation Coefficients for the  * domain [1, 2). */#define TGD2_P00     -1.8211798563156931777484715e+05#define TGD2_P01     -8.7136501560410004458390176e+04#define TGD2_P02     -3.9304030489789496641606092e+04#define TGD2_P03     -1.2078833505605729442322627e+04#define TGD2_P04     -2.2149136023607729839568492e+03#define TGD2_P05     -7.2672456596961114883015398e+02#define TGD2_P06     -2.2126466212611862971471055e+01#define TGD2_P07     -2.0162424149396112937893122e+01#define TGD2_Q00     1.0000000000000000000000000#define TGD2_Q01     -1.8212849094205905566923320e+05#define TGD2_Q02     -1.9220660507239613798446953e+05#define TGD2_Q03     2.9692670736656051303725690e+04#define TGD2_Q04     3.0352658363629092491464689e+04#define TGD2_Q05     -1.0555895821041505769244395e+04#define TGD2_Q06     1.2786642579487202056043316e+03#define TGD2_Q07     -5.5279768804094054246434098e+01static __inline vector double _tgammad2(vector double x) {    vector double signbit = spu_splats(-0.0);    vector double zerod   = spu_splats(0.0);    vector double halfd   = spu_splats(0.5);    vector double oned    = spu_splats(1.0);    vector double ninep9d = (vec_double2)spu_splats(0x4023FFFFFFFFFFFFull);    vector double twohd   = spu_splats(200.0);    vector double pi      = spu_splats(SM_PI);    vector double sqrt2pi = spu_splats(2.50662827463100050241576528481);    vector double inf     = (vector double)spu_splats(0x7FF0000000000000ull);    vector double nan     = (vector double)spu_splats(0x7FF8000000000000ull);    vector double xabs;    vector double xscaled;    vector double xtrunc;    vector double xinv;    vector double nresult;    vector double rresult; /* Rational Approx result */    vector double sresult; /* Stirling's result */    vector double result;    vector double pr,qr;    vector unsigned long long gt0   = spu_cmpgt(x, zerod);    vector unsigned long long gt1   = spu_cmpgt(x, oned);    vector unsigned long long gt9p9 = spu_cmpgt(x, ninep9d);    vector unsigned long long gt200 = spu_cmpgt(x, twohd);    xabs    = spu_andc(x, signbit);    /*     * For x in [0, 1], add 1 to x, use rational     * approximation, then use:     *     * gamma(x) = gamma(x+1)/x     *     */    xabs = spu_sel(spu_add(xabs, oned), xabs, gt1);    xtrunc = _truncd2(xabs);    /*     * For x in [2, 10):     */    xscaled = spu_add(oned, spu_sub(xabs, xtrunc));    /*     * For x in [1,2), use a rational approximation.     */    pr = spu_madd(xscaled, spu_splats(TGD2_P07), spu_splats(TGD2_P06));    pr = spu_madd(pr, xscaled, spu_splats(TGD2_P05));    pr = spu_madd(pr, xscaled, spu_splats(TGD2_P04));    pr = spu_madd(pr, xscaled, spu_splats(TGD2_P03));    pr = spu_madd(pr, xscaled, spu_splats(TGD2_P02));    pr = spu_madd(pr, xscaled, spu_splats(TGD2_P01));    pr = spu_madd(pr, xscaled, spu_splats(TGD2_P00));    qr = spu_madd(xscaled, spu_splats(TGD2_Q07), spu_splats(TGD2_Q06));    qr = spu_madd(qr, xscaled, spu_splats(TGD2_Q05));    qr = spu_madd(qr, xscaled, spu_splats(TGD2_Q04));    qr = spu_madd(qr, xscaled, spu_splats(TGD2_Q03));    qr = spu_madd(qr, xscaled, spu_splats(TGD2_Q02));    qr = spu_madd(qr, xscaled, spu_splats(TGD2_Q01));    qr = spu_madd(qr, xscaled, spu_splats(TGD2_Q00));    rresult = _divd2(pr, qr);    rresult = spu_sel(_divd2(rresult, x), rresult, gt1);    /*     * If x was in [2,10) and we pulled it into [1,2), we need to push     * it back out again.     */    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [2,3) */    xscaled = spu_add(xscaled, oned);    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [3,4) */    xscaled = spu_add(xscaled, oned);    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [4,5) */    xscaled = spu_add(xscaled, oned);    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [5,6) */    xscaled = spu_add(xscaled, oned);    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [6,7) */    xscaled = spu_add(xscaled, oned);    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [7,8) */    xscaled = spu_add(xscaled, oned);    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [8,9) */    xscaled = spu_add(xscaled, oned);    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [9,10) */    /*     * For x >= 10, we use Stirling's Approximation     */    vector double sum;    xinv    = _recipd2(xabs);                sum = spu_madd(xinv, spu_splats(STIRLING_16), spu_splats(STIRLING_15));    sum = spu_madd(sum, xinv, spu_splats(STIRLING_14));    sum = spu_madd(sum, xinv, spu_splats(STIRLING_13));    sum = spu_madd(sum, xinv, spu_splats(STIRLING_12));    sum = spu_madd(sum, xinv, spu_splats(STIRLING_11));    sum = spu_madd(sum, xinv, spu_splats(STIRLING_10));    sum = spu_madd(sum, xinv, spu_splats(STIRLING_09));    sum = spu_madd(sum, xinv, spu_splats(STIRLING_08));    sum = spu_madd(sum, xinv, spu_splats(STIRLING_07));    sum = spu_madd(sum, xinv, spu_splats(STIRLING_06));    sum = spu_madd(sum, xinv, spu_splats(STIRLING_05));    sum = spu_madd(sum, xinv, spu_splats(STIRLING_04));    sum = spu_madd(sum, xinv, spu_splats(STIRLING_03));    sum = spu_madd(sum, xinv, spu_splats(STIRLING_02));    sum = spu_madd(sum, xinv, spu_splats(STIRLING_01));    sum = spu_madd(sum, xinv, spu_splats(STIRLING_00));    sum = spu_mul(sum, sqrt2pi);    sum = spu_mul(sum, _powd2(x, spu_sub(x, halfd)));    sresult = spu_mul(sum, _expd2(spu_or(x, signbit)));    /*     * Choose rational approximation or Stirling's result.     */    result = spu_sel(rresult, sresult, gt9p9);    result = spu_sel(result, inf, gt200);    /* For x < 0, use:     *     * gamma(x) = pi/(x*gamma(-x)*sin(x*pi))     * or     * gamma(x) = pi/(gamma(1 - x)*sin(x*pi))     */    nresult = _divd2(pi, spu_mul(x, spu_mul(result, _sind2(spu_mul(x, pi)))));    result = spu_sel(nresult, result, gt0);    /*     * x = non-positive integer, return NaN.     */    result = spu_sel(result, nan, spu_andc(spu_cmpeq(x, xtrunc), gt0));    return result;}#endif /* _TGAMMAD2_H_ */#endif /* __SPU__ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -