⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cos_sin.h

📁 Newlib 嵌入式 C库 标准实现代码
💻 H
字号:
/* --------------------------------------------------------------  *//* (C)Copyright 2006,2007,                                         *//* International Business Machines Corporation,                    *//* Sony Computer Entertainment, Incorporated,                      *//* Toshiba Corporation,                                            *//*                                                                 *//* All Rights Reserved.                                            *//*                                                                 *//* Redistribution and use in source and binary forms, with or      *//* without modification, are permitted provided that the           *//* following conditions are met:                                   *//*                                                                 *//* - Redistributions of source code must retain the above copyright*//*   notice, this list of conditions and the following disclaimer. *//*                                                                 *//* - Redistributions in binary form must reproduce the above       *//*   copyright notice, this list of conditions and the following   *//*   disclaimer in the documentation and/or other materials        *//*   provided with the distribution.                               *//*                                                                 *//* - Neither the name of IBM Corporation nor the names of its      *//*   contributors may be used to endorse or promote products       *//*   derived from this software without specific prior written     *//*   permission.                                                   *//* Redistributions of source code must retain the above copyright  *//* notice, this list of conditions and the following disclaimer.   *//*                                                                 *//* Redistributions in binary form must reproduce the above         *//* copyright notice, this list of conditions and the following     *//* disclaimer in the documentation and/or other materials          *//* provided with the distribution.                                 *//*                                                                 *//* Neither the name of IBM Corporation nor the names of its        *//* contributors may be used to endorse or promote products         *//* derived from this software without specific prior written       *//* permission.                                                     *//*                                                                 *//* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          *//* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     *//* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        *//* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        *//* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            *//* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    *//* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    *//* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    *//* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        *//* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       *//* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    *//* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  *//* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              *//* --------------------------------------------------------------  *//* PROLOG END TAG zYx                                              */#ifdef __SPU__#ifndef _COS_SIN_H_#define _COS_SIN_H_	1#define M_PI_OVER_4_HI_32 0x3fe921fb#define M_PI_OVER_4	0.78539816339744827900#define M_FOUR_OVER_PI 	1.27323954478442180616#define M_PI_OVER_2	1.57079632679489655800#define M_PI_OVER_2_HI 	1.57079632673412561417#define M_PI_OVER_2_LO 	0.0000000000607710050650619224932#define M_PI_OVER_2F_HI   1.570312500000000000#define M_PI_OVER_2F_LO	  0.000483826794896558/* The following coefficients correspond to the Taylor series * coefficients for cos and sin. */#define COS_14 -0.00000000001138218794258068723867#define COS_12  0.000000002087614008917893178252#define COS_10 -0.0000002755731724204127572108#define COS_08  0.00002480158729870839541888#define COS_06 -0.001388888888888735934799#define COS_04  0.04166666666666666534980#define COS_02 -0.5000000000000000000000#define COS_00  1.0#define SIN_15 -0.00000000000076471637318198164759#define SIN_13  0.00000000016059043836821614599#define SIN_11 -0.000000025052108385441718775#define SIN_09  0.0000027557319223985890653#define SIN_07 -0.0001984126984126984127#define SIN_05  0.008333333333333333333#define SIN_03 -0.16666666666666666666#define SIN_01  1.0/* Compute the following for each floating point element of x.  * 	x  = fmod(x, PI/4);  *  	ix = (int)x * PI/4; * This allows one to compute cos / sin over the limited range * and select the sign and correct result based upon the octant * of the original angle (as defined by the ix result). * * Expected Inputs Types:  * 	x  = vec_float4 *	ix = vec_int4 */#define MOD_PI_OVER_FOUR_F(_x, _ix) {					\    vec_float4 fx;							\									\    _ix = spu_convts(spu_mul(_x, spu_splats((float)M_FOUR_OVER_PI)), 0); \    _ix = spu_add(_ix, spu_add(spu_rlmaska((vec_int4)_x, -31), 1));	\									\    fx = spu_convtf(spu_rlmaska(_ix, -1), 0);				\    _x  = spu_nmsub(fx, spu_splats((float)M_PI_OVER_2F_HI), _x);	\    _x  = spu_nmsub(fx, spu_splats((float)M_PI_OVER_2F_LO), _x);	\  }/* Double precision MOD_PI_OVER_FOUR * * Expected Inputs Types:  * 	x  = vec_double2 *	ix = vec_int4 */#define MOD_PI_OVER_FOUR(_x, _ix) {					\    vec_float4 fx;							\    vec_double2 dix;							\									\    fx = spu_roundtf(spu_mul(_x, spu_splats(M_FOUR_OVER_PI)));	\    _ix = spu_convts(fx, 0);						\    _ix = spu_add(_ix, spu_add(spu_rlmaska((vec_int4)fx, -31), 1));	\									\    dix = spu_extend(spu_convtf(spu_rlmaska(_ix, -1), 0));		\    _x  = spu_nmsub(spu_splats(M_PI_OVER_2_HI), dix, _x);		\    _x  = spu_nmsub(spu_splats(M_PI_OVER_2_LO), dix, _x);		\  }/* Compute the cos(x) and sin(x) for the range reduced angle x. * In order to compute these trig functions to full single precision * accuracy, we solve the Taylor series. * *   c = cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! - x^10/10! *   s = sin(x) = x - x^3/4! + x^5/5! - x^7/7! + x^9/9! - x^11/11! * * Expected Inputs Types:  * 	x = vec_float4 *	c = vec_float4 *	s = vec_float4 */#define COMPUTE_COS_SIN_F(_x, _c, _s) {					\    vec_float4 x2, x4, x6;						\    vec_float4 cos_hi, cos_lo;						\    vec_float4 sin_hi, sin_lo;						\									\    x2 = spu_mul(_x, _x);						\    x4 = spu_mul(x2, x2);						\    x6 = spu_mul(x2, x4);						\									\    cos_hi = spu_madd(spu_splats((float)COS_10), x2, spu_splats((float)COS_08)); \    cos_lo = spu_madd(spu_splats((float)COS_04), x2, spu_splats((float)COS_02)); \    cos_hi = spu_madd(cos_hi, x2, spu_splats((float)COS_06));		\    cos_lo = spu_madd(cos_lo, x2, spu_splats((float)COS_00));		\    _c     = spu_madd(cos_hi, x6, cos_lo);				\									\    sin_hi = spu_madd(spu_splats((float)SIN_11), x2, spu_splats((float)SIN_09)); \    sin_lo = spu_madd(spu_splats((float)SIN_05), x2, spu_splats((float)SIN_03)); \    sin_hi = spu_madd(sin_hi, x2, spu_splats((float)SIN_07));		\    sin_lo = spu_madd(sin_lo, x2, spu_splats((float)SIN_01));		\    _s    = spu_madd(sin_hi, x6, sin_lo);				\    _s     = spu_mul(_s, _x);						\  }/* Compute the cos(x) and sin(x) for the range reduced angle x. * This version computes the cosine and sine to double precision  * accuracy using the Taylor series: * *   c = cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! - x^10/10! + x^12/12! - x^14/14! *   s = sin(x) = x - x^3/4! + x^5/5! - x^7/7! + x^9/9! - x^11/11! + x^13/13! - x^15/15! * * Expected Inputs Types:  * 	x = vec_double2 *	c = vec_double2 *	s = vec_double2 */#define COMPUTE_COS_SIN(_x, _c, _s) {					\    vec_double2 x2, x4, x8;						\    vec_double2 cos_hi, cos_lo;						\    vec_double2 sin_hi, sin_lo;						\									\    x2 = spu_mul(_x, _x);						\    x4 = spu_mul(x2, x2);						\    x8 = spu_mul(x4, x4);						\									\    cos_hi = spu_madd(spu_splats(COS_14), x2, spu_splats(COS_12));	\    cos_lo = spu_madd(spu_splats(COS_06), x2, spu_splats(COS_04));	\    cos_hi = spu_madd(cos_hi, x2, spu_splats(COS_10));			\    cos_lo = spu_madd(cos_lo, x2, spu_splats(COS_02));			\    cos_hi = spu_madd(cos_hi, x2, spu_splats(COS_08));			\    cos_lo = spu_madd(cos_lo, x2, spu_splats(COS_00));			\    _c     = spu_madd(cos_hi, x8, cos_lo);				\									\    sin_hi = spu_madd(spu_splats(SIN_15), x2, spu_splats(SIN_13));	\    sin_lo = spu_madd(spu_splats(SIN_07), x2, spu_splats(SIN_05));	\    sin_hi = spu_madd(sin_hi, x2, spu_splats(SIN_11));			\    sin_lo = spu_madd(sin_lo, x2, spu_splats(SIN_03));			\    sin_hi = spu_madd(sin_hi, x2, spu_splats(SIN_09));			\    sin_lo = spu_madd(sin_lo, x2, spu_splats(SIN_01));			\    _s     = spu_madd(sin_hi, x8, sin_lo);				\    _s     = spu_mul(_s, _x);						\  }#endif /* _COS_SIN_H_ */#endif /* __SPU__ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -