📄 srm_b_pred.m
字号:
function [Yhat,Pmod] = srm_b_pred(M,pt,x,Y,Seq,maxx)
%SRM_B_PRED Make a partial curve prediction with an SRM_B model.
%
% This function makes posterior predictions by "predicting" values
% for all unknown variables. This is in contrast to a likelihood
% calculation which integrates over (or sums out) all unknown variables.
% The body of this function is essentially the E-step of the associated
% cluster model's EM algorithm.
%
% The main responsibility of this function is to produce partial
% curve predictions. We take the learned model M and predict the
% 'test' curve point y_hat at x_j using the learned parameters
% and the partial curve y_i(j-i) (which contains all points up to
% time j-1). The prediction is calculated in a forward-backward fashion
% so that x_j can appear anywhere in the curve.
%
% As a by-product, this function also returns the posterior model
% as the second output argument. This model contains all of the
% predicted unknown variables (e.g., the membership probabilities)
% that are required to produce the partial curve prediction.
% See the code below or the associated EM algorithm for more information.
%
% [Yhat,PostModel] = SRM_B_PRED(M,pt,X,Y,Seq,['max'])
% - M : trained model
% - pt : single time point at which to predict y_hat
% - X,Y,Seq : partial curve in Sequence format (see HELP CCToolbox)
% : IMPORTANT: length(Seq) MUST equal 2 (i.e., you can only
% : predict one curve/point with each function call.
% - max : see below
%
% A second calling form is provided that calculates the posterior
% model for multiple curves simultaneously (i.e., length(Seq)>=2).
% However, no partial curve prediction is produced in this case and
% Yhat is returned as empty.
%
% [[],PostModel] = SRM_B_PRED(M,[],x,Y,Seq,['max'])
% - M : trained model
% - pt : must equal []
% - X,Y,Seq : curves in Sequence format (see HELP CCToolbox)
% - max : see below
%
% If you pass the string 'max' as the last argument, then Yhat is
% calculated from the class w/ maximum membership probability instead
% of summing across Pik as in the default case.
% Scott Gaffney 10 October 2003
% Department of Information and Computer Science
% University of California, Irvine
PROGNAME = 'srm_b_pred';
if (~nargin)
try; help(PROGNAME); catch; end
return;
end
maxx = cexist('maxx',0);
if (isstr(maxx) & strcmp(maxx,'max'))
maxx = 1;
else
maxx = 0;
end
% preprocessing
Mupkd = M.Mu;
M.Mu = permute(M.Mu,[1 3 2]);
[P,D,K] = size(M.Mu);
n = length(Seq)-1;
% Calculate the posterior membership and log-likelihood for the provided
% partial curve information.
Pmod.Eb = zeros(n,K);
if (isempty(x))
Pmod.Pik = M.Alpha'; % we are given no curve information so the...
% ...posterior membership is just the marginal
%%%%%%%%%%% Estep
else
N = Seq(end)-1;
lens = diff(Seq);
fun = @postval;
SearchOps = M.Options.SearchOps;
%%%% Calculate posterior mode
b_int = M.Options.Interval(1);
e_int = M.Options.Interval(2);
for k=1:K
for i=1:n
indx = Seq(i):Seq(i+1)-1;
ni = length(indx);
pt0 = [0];
Pmod.Eb(i,k) = fminsearch(fun,pt0,SearchOps, ...
x(indx),Y(indx,:),M.Mu(:,:,k),M.knots,M.order,M.S(k),M.Sigma(k,:));
end
end
% Calc Pik
[Pmod.Pik, scale] = CalcPik(M,x,Y,Seq);
s = sum(Pmod.Pik,2);
Pmod.Lhood_ppt = (sum(log(s)) + N*log(scale))./prod(size(Y));
Pmod.Pik = Pmod.Pik ./ (s*ones(1,K));
% classify sequences
[trash, Pmod.C] = max(Pmod.Pik,[],2);
end
% Simply return if no prediction is requested
Yhat = [];
if (isempty(pt))
return;
end
% Generate prediction at pt
if (maxx)
[trash, k] = max(Pmod.Pik);
X = bsplinebasis(M.knots,M.order,pt-Pmod.Eb(k));
Yhat = X*M.Mu(:,:,k);
else
for d=1:D
Xk = bsplinebasis(M.knots,M.order,pt-Pmod.Eb(1,:)');
YhatK = sum(Xk'.*Mupkd(:,:,d));
Yhat(1,d) = Pmod.Pik* YhatK';
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% postval
%%
%%
function val = postval(b,x,Y,Mu,knots,order,s,sigma)
Xhat = bsplinebasis(knots,order,x-b);
val = sum(sum((Y-Xhat*Mu).^2)./sigma) + b^2/s;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CalcPik
%%
function [Pik,scale] = CalcPik(M,x,Y,Seq)
% Numerical integration
NumSamps = 100;
MaxTries = 5;
[N,D] = size(Y);
n = length(Seq)-1;
K = M.K;
P = M.order+1;
mlen = max(diff(Seq));
Pik = zeros(n,K);
Piid = zeros(N,D);
Piimk = zeros(N,NumSamps,K);
S = M.S;
TotalSamps = 0;
tries = 1;
while (1)
TotalSamps = TotalSamps + NumSamps;
Pik(:) = 0;
% calculate the density at sampled points
for k=1:K
b = randn(NumSamps,1).*sqrt(S(k));
for j=1:NumSamps
Xhat = bsplinebasis(M.knots,M.order,x-b(j));
for d=1:D
Piid(:,d) = normpdf(Y(:,d),Xhat*M.Mu(:,d,k),M.Sigma(k,d));
end
Piimk(:,j,k) = prod(Piid,2);
end
end
% now scale the data to avoid underflow with long curves
% and sum across the sample integration points
scale = mean(mean(mean(Piimk)));
Piimk_scl = Piimk./scale; % we don't scale across D; we got rid of D above.
for k=1:K
for j=1:TotalSamps
Pik(:,k) = Pik(:,k) + sprod(Piimk_scl(:,j,k),Seq,mlen);
end
end
clear Piimk_scl;
Pik = (Pik./TotalSamps) .* (ones(n,1)*M.Alpha');
if (all(sum(Pik,2))), break; end % check for stable integration
% we have detected some zeros, try again?
if (tries==MaxTries)
fprintf(['srm_tt_sh_pred: Integration failed, using realmin*1e100 ',...
'instead.\n']);
zero = find(sum(Pik,2)==0);
Pik(zero,:) = realmin*1e100*(ones(length(zero),1)*M.Alpha');
break;
else
fprintf(['srm_tt_sh_pred: Zero membership detected, trying ', ...
'integration again: %d\n'],tries);
tries = tries+1;
S = 1.10*S; % biased, but gets over some tricky integrations
NumSamps = floor(1.5*NumSamps);
Piimk = [zeros(N,NumSamps,K) Piimk]; % save current values
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -