📄 lrm_d_pred.m
字号:
function [Yhat,Pmod] = lrm_d_pred(M,pt,x,Y,Seq,maxx)
%LRM_D_PRED Make a partial curve prediction with an LRM_D model.
%
% This function makes posterior predictions by "predicting" values
% for all unknown variables. This is in contrast to a likelihood
% calculation which integrates over (or sums out) all unknown variables.
% The body of this function is essentially the E-step of the associated
% cluster model's EM algorithm.
%
% The main responsibility of this function is to produce partial
% curve predictions. We take the learned model M and predict the
% 'test' curve point y_hat at x_j using the learned parameters
% and the partial curve y_i(j-i) (which contains all points up to
% time j-1). The prediction is calculated in a forward-backward fashion
% so that x_j can appear anywhere in the curve.
%
% As a by-product, this function also returns the posterior model
% as the second output argument. This model contains all of the
% predicted unknown variables (e.g., the membership probabilities)
% that are required to produce the partial curve prediction.
% See the code below or the associated EM algorithm for more information.
%
% [Yhat,PostModel] = LRM_D_PRED(M,pt,X,Y,Seq,['max'])
% - M : trained model
% - pt : single time point at which to predict y_hat
% - X,Y,Seq : partial curve in Sequence format (see HELP CCToolbox)
% : IMPORTANT: length(Seq) MUST equal 2 (i.e., you can only
% : predict one curve/point with each function call.
% - max : see below
%
% A second calling form is provided that calculates the posterior
% model for multiple curves simultaneously (i.e., length(Seq)>=2).
% However, no partial curve prediction is produced in this case and
% Yhat is returned as empty.
%
% [[],PostModel] = LRM_D_PRED(M,[],x,Y,Seq,['max'])
% - M : trained model
% - pt : must equal []
% - X,Y,Seq : curves in Sequence format (see HELP CCToolbox)
% - max : see below
%
% If you pass the string 'max' as the last argument, then Yhat is
% calculated from the class w/ maximum membership probability instead
% of summing across Pik as in the default case.
% Scott Gaffney 10 October 2003
% Department of Information and Computer Science
% University of California, Irvine
PROGNAME = 'lrm_d_pred';
if (~nargin)
try; help(PROGNAME); catch; end
return;
end
maxx = cexist('maxx',0);
if (isstr(maxx) & strcmp(maxx,'max'))
maxx = 1;
else
maxx = 0;
end
% preprocessing
Mupkd = M.Mu;
M.Mu = permute(M.Mu,[1 3 2]);
[P,D,K] = size(M.Mu);
n = length(Seq)-1;
% Calculate the posterior membership and log-likelihood for the provided
% partial curve information.
Pmod.Ef = zeros(n,K,D);
if (isempty(x))
Pmod.Pik = M.Alpha'; % we are given no curve information so the...
else % ...posterior membership is just the marginal
X = regmat(x,P-1);
Pikd = zeros(n,K,D);
for k=1:K
for d=1:D
Mu = M.Mu(:,d,k);
sigma = M.Sigma(k,d);
s = M.S(k,d);
for i=1:n
indx = Seq(i):Seq(i+1)-1;
ni = length(indx);
XMu = X(indx,:)*Mu;
iS = eye(ni)/sigma - 1/(ni*sigma + sigma^2/s);
Pikd(i,k,d) = mvnormpdf_inv(Y(indx,d)',XMu',iS);
Pmod.Ef(i,k,d) = s/(ni*s+sigma)*sum(Y(indx,d)-XMu);
end
end
end
Pmod.Pik = prod(Pikd,3).* (ones(n,1)*M.Alpha');
s = sum(Pmod.Pik,2);
if (~all(s))
fprintf([PROGNAME, ': log(0) detected, using log(K*realmin*1e100).\n']);
zero = find(s==0);
Pmod.Pik(zero,:) = realmin*1e100*(ones(length(zero),1)*M.Alpha');
s(zero) = sum(Pmod.Pik(zero,:),2);
end
Pmod.Lhood_ppt = sum(log(s))./prod(size(Y));
Pmod.Pik = Pmod.Pik ./ (s*ones(1,K));
[trash, Pmod.C] = max(Pmod.Pik,[],2);
end
% Simply return if no prediction is requested
Yhat = [];
if (isempty(pt))
return;
end
% Generate prediction at pt
X = regmat(pt,P-1);
if (maxx)
[trash, k] = max(Pmod.Pik);
Yhat = X*M.Mu(:,:,k) + permute(Pmod.Ef(1,k,:),[1 3 2]);
else
for d=1:D
YhatK = X*Mupkd(:,:,d) + Pmod.Ef(1,:,d);
Yhat(1,d) = Pmod.Pik* YhatK';
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -