📄 mccv_like.m
字号:
function [Mu,Sigma,trainMu,trainSigma] = mccv_like(mccv)
%MCCV_LIKE Find mean and standard deviation of likelihood from MCCV runs.
% [Mu,Sigma,trainMu,trainSigma] = MCCV_LIKE(MCCV_Struct)
% or
% [Mu,Sigma,trainMu,trainSigma] = MCCV_LIKE(Array_Struct)
% Scott J Gaffney 13 March 2002
% Department of Information and Computer Science
% University of California, Irvine.
PROGNAME = 'mccv_like';
if (~nargin)
try; help(PROGNAME); catch; end
return;
end
%% Begin Argument Processing
%
Mu=[]; Sigma=[]; trainMu=[]; trainSigma=[];
if (exist('mccv')~=1 | ~isstruct(mccv))
errorbox('Argument Error: the first argument must be a STRUCT.',PROGNAME);
return;
end
if (~isfield(mccv,'TestLike'))
return;
end
if (isfield(mccv,'runs'))
mccv = mccv.runs;
end
%
%% End Argument Processing
mccv = mccv(:);
len = length(mccv);
for i=1:len
like(:,:,i) = mccv(i).TestLike; % this is already a per point measure
trainlike(:,:,i) = reshape([mccv(i).Models.TrainLhood],size(mccv(i).TestLike));
trainlike(:,:,i) = trainlike(:,:,i) / mccv(i).Models(1).NumPoints;
end
clear mccv;
Mu = mean(like,3);
trainMu = mean(trainlike,3);
for j=1:size(like,2)
Sigma(:,j) = std(like(:,j,:),0,3);
trainSigma(:,j) = std(squeeze(trainlike(:,j,:)),0,2);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -